Ramsey theorems for knots, links and spatial graphs
HTML articles powered by AMS MathViewer
 by Seiya Negami PDF
 Trans. Amer. Math. Soc. 324 (1991), 527541 Request permission
Abstract:
An embedding $f:G \to {{\mathbf {R}}^3}$ of a graph $G$ into ${{\mathbf {R}}^3}$ is said to be linear if each edge $f(e)\quad (e \in E(G))$ is a straight line segment. It will be shown that for any knot or link type $k$, there is a finite number $R(k)$ such that every linear embedding of the complete graph ${K_n}$ with at least $R(k)$ vertices $(n \geqslant R(k))$ in ${{\mathbf {R}}^3}$ contains a knot or link equivalent to $k$.References

J. A. Bondy and U. S. R. Murty, Graph theory and its application, Macmillan, 1976.
A. F. Brown, Embedding of graphs in ${E^3}$, Ph.D. Desertation, Kent State Univ., 1977.
 Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828
 J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, J. Graph Theory 7 (1983), no. 4, 445–453. MR 722061, DOI 10.1002/jgt.3190070410
 István Fáry, On straight line representation of planar graphs, Acta Univ. Szeged. Sect. Sci. Math. 11 (1948), 229–233. MR 26311
 Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey theory, WileyInterscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1980. MR 591457
 Theodore S. Motzkin, Cooperative classes of finite sets in one and more dimensions, J. Combinatorial Theory 3 (1967), 244–251. MR 214478 F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (2) (1930), 264286.
 D. F. Robinson, Symmetric embeddings of graphs, J. Combinatorial Theory 9 (1970), 377–400. MR 278991
 Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
 Horst Sachs, On a spatial analogue of Kuratowski’s theorem on planar graphs—an open problem, Graph theory (Łagów, 1981) Lecture Notes in Math., vol. 1018, Springer, Berlin, 1983, pp. 230–241. MR 730653, DOI 10.1007/BFb0071633
 S. K. Stein, Convex maps, Proc. Amer. Math. Soc. 2 (1951), 464–466. MR 41425, DOI 10.1090/S00029939195100414255 K. Wagner, Bemerkungen zum Vierfarbenproblem, Jber. Deutsch. Math.Verein. 46 (1936), 2632.
Additional Information
 © Copyright 1991 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 324 (1991), 527541
 MSC: Primary 57M25; Secondary 05C10
 DOI: https://doi.org/10.1090/S00029947199110697419
 MathSciNet review: 1069741