## New results on the Pompeiu problem

HTML articles powered by AMS MathViewer

- by Nicola Garofalo and Fausto Segàla PDF
- Trans. Amer. Math. Soc.
**325**(1991), 273-286 Request permission

## Abstract:

Let ${p_N}(w) = \sum \nolimits _{k = 0}^N {{a_k}{w^k}}$, $w \in \mathbb {C}$, $N \in \mathbb {N}$, be a polynomial with complex coefficients. In this paper we prove that if $D \subset {\mathbb {R}^2}$ is a simply-connected bounded open set whose boundary is a closed, simple curve parametrized by $x(s) = {x_1}(s) + i{x_2}(s) = {p_N}({e^{is}})$, $s \in [ - \pi ,\pi ]$, then $D$ has the Pompeiu property unless $N = 1$ and ${p_1}(w) = {a_1}w + {a_2}$ in which case $D$ is a disk. This result supports the conjecture that modulo sets of zero two-dimensional Lebesgue measure, the disk is the only simply-connected, bounded open set which fails to have the Pompeiu property.## References

- Carlos Alberto Berenstein,
*An inverse spectral theorem and its relation to the Pompeiu problem*, J. Analyse Math.**37**(1980), 128–144. MR**583635**, DOI 10.1007/BF02797683 - Leon Brown and Jean-Pierre Kahane,
*A note on the Pompeiu problem for convex domains*, Math. Ann.**259**(1982), no. 1, 107–110. MR**656655**, DOI 10.1007/BF01456832 - Leon Brown, Bertram M. Schreiber, and B. Alan Taylor,
*Spectral synthesis and the Pompeiu problem*, Ann. Inst. Fourier (Grenoble)**23**(1973), no. 3, 125–154 (English, with French summary). MR**352492** - Luis A. Caffarelli,
*The regularity of free boundaries in higher dimensions*, Acta Math.**139**(1977), no. 3-4, 155–184. MR**454350**, DOI 10.1007/BF02392236 - L. Tchakaloff,
*Sur un problème de D. Pompéiu*, Annuaire [Godišnik] Univ. Sofia. Fac. Phys.-Math. Livre 1.**40**(1944), 1–14 (Bulgarian, with French summary). MR**0031980**
D. Pompeiu, - Stephen A. Williams,
*A partial solution of the Pompeiu problem*, Math. Ann.**223**(1976), no. 2, 183–190. MR**414904**, DOI 10.1007/BF01360881 - Stephen A. Williams,
*Analyticity of the boundary for Lipschitz domains without the Pompeiu property*, Indiana Univ. Math. J.**30**(1981), no. 3, 357–369. MR**611225**, DOI 10.1512/iumj.1981.30.30028

*Sur certains systèmes d’équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables*, C. R. Acad. Sci. Paris

**188**(1929), 1.138-1.139. —,

*Sur une propriété intégrales des fonctions de deux variables réelles*, Bull. Sci. Acad. Royale Belgique

**15**(1929), 265-269. B. Riemann,

*Sullo svolgimento del quoziente di due serie ipergeometriche in funzione continua infinita*, Complete Works, Dover, New York, 1953.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**325**(1991), 273-286 - MSC: Primary 35R30; Secondary 31B20, 35J05
- DOI: https://doi.org/10.1090/S0002-9947-1991-0994165-X
- MathSciNet review: 994165