$K_ 1$-groups, quasidiagonality, and interpolation by multiplier projections
HTML articles powered by AMS MathViewer
- by Shuang Zhang
- Trans. Amer. Math. Soc. 325 (1991), 793-818
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998130-8
- PDF | Request permission
Abstract:
We relate the following conditions on a $\sigma$-unital ${C^\ast }$-algebra $A$ with the "${\text {FS}}$ property": (a) ${K_1}(A) = 0$; (b) every projection in $M(A)/A$ lifts; (c) the general Weyl-von Neumann theorem holds in $M(A)$: Any selfadjoint element $h$ in $M(A)$ can be written as $h = \sum \nolimits _{i = 1}^\infty {{\lambda _i}{p_i} + a}$ for some selfadjoint element $a$ in $A$, some bounded real sequence $\{ {\lambda _i}\}$, and some mutually orthogonal projections $\{ {p_i}\}$ in $A$ with $\sum \nolimits _{i = 1}^\infty {{p_i} = 1}$; (d) $M(A)$ has ${\text {FS}}$; and (e) interpolation by multiplier projections holds: For any closed projections $p$ and $q$ in ${A^{\ast \ast }}$ with $pq = 0$, there is a projection $r$ in $M(A)$ such that $p \leq r \leq 1 - q$. We prove various equivalent versions of (a)-(e), and show that (e) $\Leftrightarrow$ (d) $\Leftrightarrow$ (c) $\Rightarrow$ (b) $\Leftarrow$ (a), and that (a) $\Leftrightarrow$ (b) if, in addition, $A$ is stable. Combining the above results, we obtain counterexamples to the conjecture of G. K. Pedersen "$A$ has $FS \Rightarrow M(A)$ has ${\text {FS}}$" (for example the stabilized Bunce-Deddens algebras). Hence the generalized Weyl-von Neumann theorem does not generally hold in $L({H_A})$ for $\sigma$-unital ${C^\ast }$-algebras with ${\text {FS}}$.References
- Charles A. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277โ294. MR 0251545, DOI 10.1016/0022-1236(69)90015-9
- Charles A. Akemann, Left ideal structure of $C^*$-algebras, J. Functional Analysis 6 (1970), 305โ317. MR 0275177, DOI 10.1016/0022-1236(70)90063-7
- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama, Multipliers of $C^*$-algebras, J. Functional Analysis 13 (1973), 277โ301. MR 0470685, DOI 10.1016/0022-1236(73)90036-0
- I. David Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365โ371. MR 283610, DOI 10.1090/S0002-9947-1971-0283610-0
- John W. Bunce and James A. Deddens, A family of simple $C^{\ast }$-algebras related to weighted shift operators, J. Functional Analysis 19 (1975), 13โ24. MR 0365157, DOI 10.1016/0022-1236(75)90003-8 B. Blackadar, Notes on the structure of projections in simple ${C^\ast }$-algebras, Semesterbericht Funktionalanalysis, W82, Tรผbingen, March 1983. โ, $K$-theory for operator algebras, Springer-Verlag, New York, 1987.
- Bruce Blackadar and Alexander Kumjian, Skew products of relations and the structure of simple $C^\ast$-algebras, Math. Z. 189 (1985), no.ย 1, 55โ63. MR 776536, DOI 10.1007/BF01246943
- Ola Bratteli, Inductive limits of finite dimensional $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 171 (1972), 195โ234. MR 312282, DOI 10.1090/S0002-9947-1972-0312282-2 L. G. Brown, Extensions of $AF$ algebras: the projection lifting problem, Operator Algebras and Applications, Proc. Sympos. Pure Math., vol. 38, part I, Amer. Math. Soc., Providence, R.I., 1981, pp. 175-176. โ, Semicontinuity and multipliers of ${C^\ast }$-algebras, Canad. J. Math. 40 (1989), 769-887. โ, private communication.
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no.ย 1, 131โ149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Robert C. Busby, Double centralizers and extensions of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79โ99. MR 225175, DOI 10.1090/S0002-9947-1968-0225175-5
- Man Duen Choi, Lifting projections from quotient $C^{\ast }$-algebras, J. Operator Theory 10 (1983), no.ย 1, 21โ30. MR 715551
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no.ย 3, 251โ268. MR 561974, DOI 10.1007/BF01390048
- Joachim Cuntz and Nigel Higson, Kuiperโs theorem for Hilbert modules, Operator algebras and mathematical physics (Iowa City, Iowa, 1985) Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp.ย 429โ435. MR 878392, DOI 10.1090/conm/062/878392
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185 E. G. Effros, Dimensions and ${C^\ast }$-algebras, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1981.
- George A. Elliott, Derivations of matroid $C^{\ast }$-algebras. II, Ann. of Math. (2) 100 (1974), 407โ422. MR 352999, DOI 10.2307/1971079
- George A. Elliott, Automorphisms determined by multipliers on ideals of a $C^*$-algebra, J. Functional Analysis 23 (1976), no.ย 1, 1โ10. MR 0440372, DOI 10.1016/0022-1236(76)90054-9
- P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283โ293. MR 234310
- G. J. Murphy, Diagonality in $C^*$-algebras, Math. Z. 199 (1988), no.ย 2, 279โ284. MR 958652, DOI 10.1007/BF01159656
- G. G. Kasparov, Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), no.ย 1, 133โ150. MR 587371
- J. A. Mingo, $K$-theory and multipliers of stable $C^\ast$-algebras, Trans. Amer. Math. Soc. 299 (1987), no.ย 1, 397โ411. MR 869419, DOI 10.1090/S0002-9947-1987-0869419-7
- Gert K. Pedersen, The linear span of projections in simple $C^{\ast }$-algebras, J. Operator Theory 4 (1980), no.ย 2, 289โ296. MR 595417 โ, $SA{W^\ast }$-algebras and Corona ${C^\ast }$-algebras, contributions to non-commutative topology, J. Operator Theory 15 (1986), 15-32.
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no.ย 1, 97โ113. MR 415338 H. Weyl, Ueber beschraenkte quadratischen formen deren differentz vollstetigist, Rend. Circ. Mat. Palermo 27 (1909), 373-392. S. Zhang, Certain ${C^\ast }$-algebras with real rank zero and their corona and multiplier algebras, Parts I, IV, preprints. โ, Certain ${C^\ast }$-algebras with real rank zero and their corona and multiplier algebras, Part II, $K$-Theory (to appear); Part III, Canad. J. Math. 62 (1990), 159-190.
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 325 (1991), 793-818
- MSC: Primary 46L05; Secondary 46L80
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998130-8
- MathSciNet review: 998130