## $K_ 1$-groups, quasidiagonality, and interpolation by multiplier projections

HTML articles powered by AMS MathViewer

- by Shuang Zhang PDF
- Trans. Amer. Math. Soc.
**325**(1991), 793-818 Request permission

## Abstract:

We relate the following conditions on a $\sigma$-unital ${C^\ast }$-algebra $A$ with the "${\text {FS}}$ property": (a) ${K_1}(A) = 0$; (b) every projection in $M(A)/A$ lifts; (c) the general Weyl-von Neumann theorem holds in $M(A)$: Any selfadjoint element $h$ in $M(A)$ can be written as $h = \sum \nolimits _{i = 1}^\infty {{\lambda _i}{p_i} + a}$ for some selfadjoint element $a$ in $A$, some bounded real sequence $\{ {\lambda _i}\}$, and some mutually orthogonal projections $\{ {p_i}\}$ in $A$ with $\sum \nolimits _{i = 1}^\infty {{p_i} = 1}$; (d) $M(A)$ has ${\text {FS}}$; and (e) interpolation by multiplier projections holds: For any closed projections $p$ and $q$ in ${A^{\ast \ast }}$ with $pq = 0$, there is a projection $r$ in $M(A)$ such that $p \leq r \leq 1 - q$. We prove various equivalent versions of (a)-(e), and show that (e) $\Leftrightarrow$ (d) $\Leftrightarrow$ (c) $\Rightarrow$ (b) $\Leftarrow$ (a), and that (a) $\Leftrightarrow$ (b) if, in addition, $A$ is stable. Combining the above results, we obtain counterexamples to the conjecture of G. K. Pedersen "$A$ has $FS \Rightarrow M(A)$ has ${\text {FS}}$" (for example the stabilized Bunce-Deddens algebras). Hence the generalized Weyl-von Neumann theorem does not generally hold in $L({H_A})$ for $\sigma$-unital ${C^\ast }$-algebras with ${\text {FS}}$.## References

- Charles A. Akemann,
*The general Stone-Weierstrass problem*, J. Functional Analysis**4**(1969), 277โ294. MR**0251545**, DOI 10.1016/0022-1236(69)90015-9 - Charles A. Akemann,
*Left ideal structure of $C^*$-algebras*, J. Functional Analysis**6**(1970), 305โ317. MR**0275177**, DOI 10.1016/0022-1236(70)90063-7 - Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama,
*Multipliers of $C^*$-algebras*, J. Functional Analysis**13**(1973), 277โ301. MR**0470685**, DOI 10.1016/0022-1236(73)90036-0 - I. David Berg,
*An extension of the Weyl-von Neumann theorem to normal operators*, Trans. Amer. Math. Soc.**160**(1971), 365โ371. MR**283610**, DOI 10.1090/S0002-9947-1971-0283610-0 - John W. Bunce and James A. Deddens,
*A family of simple $C^{\ast }$-algebras related to weighted shift operators*, J. Functional Analysis**19**(1975), 13โ24. MR**0365157**, DOI 10.1016/0022-1236(75)90003-8
B. Blackadar, - Bruce Blackadar and Alexander Kumjian,
*Skew products of relations and the structure of simple $C^\ast$-algebras*, Math. Z.**189**(1985), no.ย 1, 55โ63. MR**776536**, DOI 10.1007/BF01246943 - Ola Bratteli,
*Inductive limits of finite dimensional $C^{\ast }$-algebras*, Trans. Amer. Math. Soc.**171**(1972), 195โ234. MR**312282**, DOI 10.1090/S0002-9947-1972-0312282-2
L. G. Brown, - Lawrence G. Brown and Gert K. Pedersen,
*$C^*$-algebras of real rank zero*, J. Funct. Anal.**99**(1991), no.ย 1, 131โ149. MR**1120918**, DOI 10.1016/0022-1236(91)90056-B - Robert C. Busby,
*Double centralizers and extensions of $C^{\ast }$-algebras*, Trans. Amer. Math. Soc.**132**(1968), 79โ99. MR**225175**, DOI 10.1090/S0002-9947-1968-0225175-5 - Man Duen Choi,
*Lifting projections from quotient $C^{\ast }$-algebras*, J. Operator Theory**10**(1983), no.ย 1, 21โ30. MR**715551** - Joachim Cuntz and Wolfgang Krieger,
*A class of $C^{\ast }$-algebras and topological Markov chains*, Invent. Math.**56**(1980), no.ย 3, 251โ268. MR**561974**, DOI 10.1007/BF01390048 - Joachim Cuntz and Nigel Higson,
*Kuiperโs theorem for Hilbert modules*, Operator algebras and mathematical physics (Iowa City, Iowa, 1985) Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp.ย 429โ435. MR**878392**, DOI 10.1090/conm/062/878392 - Jacques Dixmier,
*$C^*$-algebras*, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR**0458185**
E. G. Effros, - George A. Elliott,
*Derivations of matroid $C^{\ast }$-algebras. II*, Ann. of Math. (2)**100**(1974), 407โ422. MR**352999**, DOI 10.2307/1971079 - George A. Elliott,
*Automorphisms determined by multipliers on ideals of a $C^*$-algebra*, J. Functional Analysis**23**(1976), no.ย 1, 1โ10. MR**0440372**, DOI 10.1016/0022-1236(76)90054-9 - P. R. Halmos,
*Quasitriangular operators*, Acta Sci. Math. (Szeged)**29**(1968), 283โ293. MR**234310** - G. J. Murphy,
*Diagonality in $C^*$-algebras*, Math. Z.**199**(1988), no.ย 2, 279โ284. MR**958652**, DOI 10.1007/BF01159656 - G. G. Kasparov,
*Hilbert $C^{\ast }$-modules: theorems of Stinespring and Voiculescu*, J. Operator Theory**4**(1980), no.ย 1, 133โ150. MR**587371** - J. A. Mingo,
*$K$-theory and multipliers of stable $C^\ast$-algebras*, Trans. Amer. Math. Soc.**299**(1987), no.ย 1, 397โ411. MR**869419**, DOI 10.1090/S0002-9947-1987-0869419-7 - Gert K. Pedersen,
*The linear span of projections in simple $C^{\ast }$-algebras*, J. Operator Theory**4**(1980), no.ย 2, 289โ296. MR**595417**
โ, $SA{W^\ast }$- - Dan Voiculescu,
*A non-commutative Weyl-von Neumann theorem*, Rev. Roumaine Math. Pures Appl.**21**(1976), no.ย 1, 97โ113. MR**415338**
H. Weyl,

*Notes on the structure of projections in simple*${C^\ast }$-

*algebras*, Semesterbericht Funktionalanalysis, W82, Tรผbingen, March 1983. โ, $K$-

*theory for operator algebras*, Springer-Verlag, New York, 1987.

*Extensions of*$AF$

*algebras*:

*the projection lifting problem*, Operator Algebras and Applications, Proc. Sympos. Pure Math., vol. 38, part I, Amer. Math. Soc., Providence, R.I., 1981, pp. 175-176. โ,

*Semicontinuity and multipliers of*${C^\ast }$-

*algebras*, Canad. J. Math.

**40**(1989), 769-887. โ, private communication.

*Dimensions and*${C^\ast }$-

*algebras*, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, R.I., 1981.

*algebras and Corona*${C^\ast }$-

*algebras, contributions to non-commutative topology*, J. Operator Theory

**15**(1986), 15-32.

*Ueber beschraenkte quadratischen formen deren differentz vollstetigist*, Rend. Circ. Mat. Palermo

**27**(1909), 373-392. S. Zhang,

*Certain*${C^\ast }$-

*algebras with real rank zero and their corona and multiplier algebras*, Parts I, IV, preprints. โ,

*Certain*${C^\ast }$-

*algebras with real rank zero and their corona and multiplier algebras*, Part II, $K$-Theory (to appear); Part III, Canad. J. Math.

**62**(1990), 159-190.

## Additional Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**325**(1991), 793-818 - MSC: Primary 46L05; Secondary 46L80
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998130-8
- MathSciNet review: 998130