Partitions, irreducible characters, and inequalities for generalized matrix functions
HTML articles powered by AMS MathViewer
- by Thomas H. Pate
- Trans. Amer. Math. Soc. 325 (1991), 875-894
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998356-3
- PDF | Request permission
Abstract:
Given a partition $\alpha = \{ {\alpha _1},{\alpha _2}, \ldots ,{\alpha _s}\}$, ${\alpha _1} \geq {\alpha _2} \geq \cdots \geq {\alpha _s}$, of $n$ we let ${X_\alpha }$ denote the derived irreducible character of ${S_n}$, and we associate with $\alpha$ a derived partition \[ \alpha \prime = \{ {\alpha _1} - 1,{\alpha _2} - 1, \ldots ,{\alpha _t} - 1,{\alpha _{t + 1}}, \ldots ,{\alpha _s},{1^t}\} \] where $t$ denotes the smallest positive integer such that ${\alpha _t} > {\alpha _{t + 1}}\;({\alpha _{s + 1}} = 0)$. We show that if $Y$ is a decomposable $\mathbb {C}$-valued $n$-linear function on ${\mathbb {C}^m} \times {\mathbb {C}^m} \times \cdots \times {\mathbb {C}^m}$ ($n$-copies) then $\left \langle {{X_\alpha }Y,Y} \right \rangle \geq \left \langle {{X_\alpha },Y,Y} \right \rangle$. Translating into the notation of matrix theory we obtain an inequality involving the generalized matrix functions ${d_{{X_\alpha }}}$ and ${d_{{X_{\alpha \prime }}}}$, namely that \[ {({X_\alpha }(e))^{ - 1}}{d_{{X_\alpha }}}(B) \geq {({X_{\alpha \prime }}(e))^{ - 1}}{d_{{X_{\alpha \prime }}}}(B)\] for each $n \times n$ positive semidefinite Hermitian matrix $B$. This result generalizes a classical result of I. Schur and includes many other known inequalities as special cases.References
- J. W. Neuberger, Norm of symmetric product compared with norm of tensor product, Linear and Multilinear Algebra 2 (1974), 115–121. MR 369398, DOI 10.1080/03081087408817047
- Thomas H. Pate, A continuous analogue of the Lieb-Neuberger inequality, Houston J. Math. 12 (1986), no. 2, 225–234. MR 862039
- I. Schur, Über endliche Gruppen und Hermitesche Formen, Math. Z. 1 (1918), no. 2-3, 184–207 (German). MR 1544291, DOI 10.1007/BF01203611
- Marvin Marcus, On two classical results of I. Schur, Bull. Amer. Math. Soc. 70 (1964), 685–688. MR 164977, DOI 10.1090/S0002-9904-1964-11162-9
- Marvin Marcus, The Hadamard theorem for permanents, Proc. Amer. Math. Soc. 15 (1964), 967–973. MR 168585, DOI 10.1090/S0002-9939-1964-0168585-9
- Elliott H. Lieb, Proofs of some conjectures on permanents, J. Math. Mech. 16 (1966), 127–134. MR 0202745, DOI 10.1512/iumj.1967.16.16008
- Marvin Marcus, Finite dimensional multilinear algebra. Part II, Pure and Applied Mathematics, Vol. 23, Marcel Dekker, Inc., New York, 1975. MR 0401796
- Gordon D. James and Martin W. Liebeck, Permanents and immanants of Hermitian matrices, Proc. London Math. Soc. (3) 55 (1987), no. 2, 243–265. MR 896221, DOI 10.1093/plms/s3-55_{2}.243
- Thomas H. Pate, Permanental dominance and the Soules conjecture for certain right ideals in the group algebra, Linear and Multilinear Algebra 24 (1989), no. 2, 135–149. MR 1007251, DOI 10.1080/03081088908817906
- Peter Heyfron, Immanant dominance orderings for hook partitions, Linear and Multilinear Algebra 24 (1988), no. 1, 65–78. MR 1007246, DOI 10.1080/03081088808817899
- Russell Merris and William Watkins, Inequalities and identities for generalized matrix functions, Linear Algebra Appl. 64 (1985), 223–242. MR 776529, DOI 10.1016/0024-3795(85)90279-4
- M. A. Naĭmark and A. I. Štern, Theory of group representations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 246, Springer-Verlag, New York, 1982. Translated from the Russian by Elizabeth Hewitt; Translation edited by Edwin Hewitt. MR 793377, DOI 10.1007/978-1-4613-8142-6
- Jean-Pierre Serre, Linear representations of finite groups, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR 0450380
- Thomas H. Pate, Generalizing the Fischer inequality, Linear Algebra Appl. 92 (1987), 1–15. MR 894634, DOI 10.1016/0024-3795(87)90247-3
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 325 (1991), 875-894
- MSC: Primary 15A15
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998356-3
- MathSciNet review: 998356