## Partitions, irreducible characters, and inequalities for generalized matrix functions

HTML articles powered by AMS MathViewer

- by Thomas H. Pate
- Trans. Amer. Math. Soc.
**325**(1991), 875-894 - DOI: https://doi.org/10.1090/S0002-9947-1991-0998356-3
- PDF | Request permission

## Abstract:

Given a partition $\alpha = \{ {\alpha _1},{\alpha _2}, \ldots ,{\alpha _s}\}$, ${\alpha _1} \geq {\alpha _2} \geq \cdots \geq {\alpha _s}$, of $n$ we let ${X_\alpha }$ denote the derived irreducible character of ${S_n}$, and we associate with $\alpha$ a derived partition \[ \alpha \prime = \{ {\alpha _1} - 1,{\alpha _2} - 1, \ldots ,{\alpha _t} - 1,{\alpha _{t + 1}}, \ldots ,{\alpha _s},{1^t}\} \] where $t$ denotes the smallest positive integer such that ${\alpha _t} > {\alpha _{t + 1}}\;({\alpha _{s + 1}} = 0)$. We show that if $Y$ is a decomposable $\mathbb {C}$-valued $n$-linear function on ${\mathbb {C}^m} \times {\mathbb {C}^m} \times \cdots \times {\mathbb {C}^m}$ ($n$-copies) then $\left \langle {{X_\alpha }Y,Y} \right \rangle \geq \left \langle {{X_\alpha },Y,Y} \right \rangle$. Translating into the notation of matrix theory we obtain an inequality involving the generalized matrix functions ${d_{{X_\alpha }}}$ and ${d_{{X_{\alpha \prime }}}}$, namely that \[ {({X_\alpha }(e))^{ - 1}}{d_{{X_\alpha }}}(B) \geq {({X_{\alpha \prime }}(e))^{ - 1}}{d_{{X_{\alpha \prime }}}}(B)\] for each $n \times n$ positive semidefinite Hermitian matrix $B$. This result generalizes a classical result of I. Schur and includes many other known inequalities as special cases.## References

- J. W. Neuberger,
*Norm of symmetric product compared with norm of tensor product*, Linear and Multilinear Algebra**2**(1974), 115–121. MR**369398**, DOI 10.1080/03081087408817047 - Thomas H. Pate,
*A continuous analogue of the Lieb-Neuberger inequality*, Houston J. Math.**12**(1986), no. 2, 225–234. MR**862039** - I. Schur,
*Über endliche Gruppen und Hermitesche Formen*, Math. Z.**1**(1918), no. 2-3, 184–207 (German). MR**1544291**, DOI 10.1007/BF01203611 - Marvin Marcus,
*On two classical results of I. Schur*, Bull. Amer. Math. Soc.**70**(1964), 685–688. MR**164977**, DOI 10.1090/S0002-9904-1964-11162-9 - Marvin Marcus,
*The Hadamard theorem for permanents*, Proc. Amer. Math. Soc.**15**(1964), 967–973. MR**168585**, DOI 10.1090/S0002-9939-1964-0168585-9 - Elliott H. Lieb,
*Proofs of some conjectures on permanents*, J. Math. Mech.**16**(1966), 127–134. MR**0202745**, DOI 10.1512/iumj.1967.16.16008 - Marvin Marcus,
*Finite dimensional multilinear algebra. Part II*, Pure and Applied Mathematics, Vol. 23, Marcel Dekker, Inc., New York, 1975. MR**0401796** - Gordon D. James and Martin W. Liebeck,
*Permanents and immanants of Hermitian matrices*, Proc. London Math. Soc. (3)**55**(1987), no. 2, 243–265. MR**896221**, DOI 10.1093/plms/s3-55_{2}.243 - Thomas H. Pate,
*Permanental dominance and the Soules conjecture for certain right ideals in the group algebra*, Linear and Multilinear Algebra**24**(1989), no. 2, 135–149. MR**1007251**, DOI 10.1080/03081088908817906 - Peter Heyfron,
*Immanant dominance orderings for hook partitions*, Linear and Multilinear Algebra**24**(1988), no. 1, 65–78. MR**1007246**, DOI 10.1080/03081088808817899 - Russell Merris and William Watkins,
*Inequalities and identities for generalized matrix functions*, Linear Algebra Appl.**64**(1985), 223–242. MR**776529**, DOI 10.1016/0024-3795(85)90279-4 - M. A. Naĭmark and A. I. Štern,
*Theory of group representations*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 246, Springer-Verlag, New York, 1982. Translated from the Russian by Elizabeth Hewitt; Translation edited by Edwin Hewitt. MR**793377**, DOI 10.1007/978-1-4613-8142-6 - Jean-Pierre Serre,
*Linear representations of finite groups*, Graduate Texts in Mathematics, Vol. 42, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott. MR**0450380** - Thomas H. Pate,
*Generalizing the Fischer inequality*, Linear Algebra Appl.**92**(1987), 1–15. MR**894634**, DOI 10.1016/0024-3795(87)90247-3

## Bibliographic Information

- © Copyright 1991 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**325**(1991), 875-894 - MSC: Primary 15A15
- DOI: https://doi.org/10.1090/S0002-9947-1991-0998356-3
- MathSciNet review: 998356