## Boundaries of Markov partitions

HTML articles powered by AMS MathViewer

- by Jonathan Ashley, Bruce Kitchens and Matthew Stafford PDF
- Trans. Amer. Math. Soc.
**333**(1992), 177-201 Request permission

## Abstract:

The core of a Markov partition is the nonwandering set of the map restricted to the boundary of the partition. We show that the core of a Markov partition is always a finitely presented system. Then we show that every one sided sofic system occurs as the core of a Markov partition for an $n$-fold covering map on the circle and every two sided sofic system occurs as the core of a Markov partition for a hyperbolic automorphism of the two dimensional torus.## References

- Roy L. Adler, L. Wayne Goodwyn, and Benjamin Weiss,
*Equivalence of topological Markov shifts*, Israel J. Math.**27**(1977), no. 1, 48–63. MR**437715**, DOI 10.1007/BF02761605 - Roy L. Adler and Benjamin Weiss,
*Similarity of automorphisms of the torus*, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR**0257315** - Roy L. Adler and Brian Marcus,
*Topological entropy and equivalence of dynamical systems*, Mem. Amer. Math. Soc.**20**(1979), no. 219, iv+84. MR**533691**, DOI 10.1090/memo/0219 - Rufus Bowen,
*Equilibrium states and the ergodic theory of Anosov diffeomorphisms*, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR**0442989** - Rufus Bowen,
*On Axiom A diffeomorphisms*, Regional Conference Series in Mathematics, No. 35, American Mathematical Society, Providence, R.I., 1978. MR**0482842** - Rufus Bowen,
*Markov partitions are not smooth*, Proc. Amer. Math. Soc.**71**(1978), no. 1, 130–132. MR**474415**, DOI 10.1090/S0002-9939-1978-0474415-8 - Ethan M. Coven and Michael E. Paul,
*Endomorphisms of irreducible subshifts of finite type*, Math. Systems Theory**8**(1974/75), no. 2, 167–175. MR**383378**, DOI 10.1007/BF01762187
E. Coven and W. Reddy, - David Fried,
*Finitely presented dynamical systems*, Ergodic Theory Dynam. Systems**7**(1987), no. 4, 489–507. MR**922362**, DOI 10.1017/S014338570000417X - G. A. Hedlund,
*Endomorphisms and automorphisms of the shift dynamical system*, Math. Systems Theory**3**(1969), 320–375. MR**259881**, DOI 10.1007/BF01691062 - Wolfgang Krieger,
*On sofic systems. I*, Israel J. Math.**48**(1984), no. 4, 305–330. MR**776312**, DOI 10.1007/BF02760631 - Wolfgang Krieger,
*On the subsystems of topological Markov chains*, Ergodic Theory Dynam. Systems**2**(1982), no. 2, 195–202 (1983). MR**693975**, DOI 10.1017/S0143385700001516 - Brian Marcus,
*Factors and extensions of full shifts*, Monatsh. Math.**88**(1979), no. 3, 239–247. MR**553733**, DOI 10.1007/BF01295238 - Michael Shub,
*Global stability of dynamical systems*, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR**869255**, DOI 10.1007/978-1-4757-1947-5 - Matthew Stafford,
*Markov partitions for expanding maps of the circle*, Trans. Amer. Math. Soc.**324**(1991), no. 1, 385–403. MR**1049617**, DOI 10.1090/S0002-9947-1991-1049617-3 - Benjamin Weiss,
*Subshifts of finite type and sofic systems*, Monatsh. Math.**77**(1973), 462–474. MR**340556**, DOI 10.1007/BF01295322

*Positively expansive maps of compact manifolds*.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**333**(1992), 177-201 - MSC: Primary 58F15; Secondary 28D05, 54H20, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1992-1073772-3
- MathSciNet review: 1073772