## On the generalized Ramanujan-Nagell equation $x^ 2-D=2^ {n+2}$

HTML articles powered by AMS MathViewer

- by Mao Hua Le PDF
- Trans. Amer. Math. Soc.
**334**(1992), 809-825 Request permission

## Abstract:

Let $D$ be a positive integer which is odd. In this paper we prove that the equation ${x^2} - D = {2^{n + 2}}$ has at most three positive integer solutions $(x,n)$ except when $D = {2^{2m}} - 3 \cdot {2^{m + 1}} + 1$ , where $m$ is a positive integer with $m \geq 3$ .## References

- F. Beukers,
*On the generalized Ramanujan-Nagell equation. I*, Acta Arith.**38**(1980/81), no. 4, 389–410. MR**621008**, DOI 10.4064/aa-38-4-389-410 - Loo Keng Hua,
*Introduction to number theory*, Springer-Verlag, Berlin-New York, 1982. Translated from the Chinese by Peter Shiu. MR**665428**, DOI 10.1007/978-3-642-68130-1 - Rudolf Lidl and Harald Niederreiter,
*Finite fields*, Encyclopedia of Mathematics and its Applications, vol. 20, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1983. With a foreword by P. M. Cohn. MR**746963** - Trygve Nagell,
*Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns*, Nova Acta Soc. Sci. Upsaliensis (4)**16**(1955), no. 2, 38. MR**70645**

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**334**(1992), 809-825 - MSC: Primary 11D61
- DOI: https://doi.org/10.1090/S0002-9947-1992-1070350-7
- MathSciNet review: 1070350