## Computing the Mordell-Weil rank of Jacobians of curves of genus two

HTML articles powered by AMS MathViewer

- by Daniel M. Gordon and David Grant PDF
- Trans. Amer. Math. Soc.
**337**(1993), 807-824 Request permission

## Abstract:

We derive the equations necessary to perform a two-descent on the Jacobians of curves of genus two with rational Weierstrass points. We compute the Mordell-Weil rank of the Jacobian of some genus two curves defined over the rationals, and discuss the practicality of using this method.## References

- Leonard M. Adleman and Ming-Deh A. Huang,
*Primality testing and abelian varieties over finite fields*, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, Berlin, 1992. MR**1176511**, DOI 10.1007/BFb0090185 - E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris,
*Geometry of algebraic curves. Vol. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR**770932**, DOI 10.1007/978-1-4757-5323-3 - Enrico Bombieri,
*The Mordell conjecture revisited*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**17**(1990), no. 4, 615–640. MR**1093712** - David G. Cantor,
*Computing in the Jacobian of a hyperelliptic curve*, Math. Comp.**48**(1987), no. 177, 95–101. MR**866101**, DOI 10.1090/S0025-5718-1987-0866101-0 - J. W. S. Cassels,
*Diophantine equations with special reference to elliptic curves*, J. London Math. Soc.**41**(1966), 193–291. MR**199150**, DOI 10.1112/jlms/s1-41.1.193
—, - Kevin R. Coombes and David R. Grant,
*On heterogeneous spaces*, J. London Math. Soc. (2)**40**(1989), no. 3, 385–397. MR**1053609**, DOI 10.1112/jlms/s2-40.3.385 - Gerd Faltings,
*Diophantine approximation on abelian varieties*, Ann. of Math. (2)**133**(1991), no. 3, 549–576. MR**1109353**, DOI 10.2307/2944319 - Eugene Victor Flynn,
*The Jacobian and formal group of a curve of genus $2$ over an arbitrary ground field*, Math. Proc. Cambridge Philos. Soc.**107**(1990), no. 3, 425–441. MR**1041476**, DOI 10.1017/S0305004100068729 - David Grant,
*Formal groups in genus two*, J. Reine Angew. Math.**411**(1990), 96–121. MR**1072975**, DOI 10.1515/crll.1990.411.96 - Marvin J. Greenberg,
*Lectures on forms in many variables*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0241358** - Neal Koblitz,
*Hyperelliptic cryptosystems*, J. Cryptology**1**(1989), no. 3, 139–150. MR**1007215**, DOI 10.1007/BF02252872 - Neal Koblitz,
*Elliptic curve cryptosystems*, Math. Comp.**48**(1987), no. 177, 203–209. MR**866109**, DOI 10.1090/S0025-5718-1987-0866109-5 - H. W. Lenstra Jr.,
*Elliptic curves and number-theoretic algorithms*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 99–120. MR**934218** - B. Mazur,
*Rational isogenies of prime degree (with an appendix by D. Goldfeld)*, Invent. Math.**44**(1978), no. 2, 129–162. MR**482230**, DOI 10.1007/BF01390348 - Barry Mazur,
*Arithmetic on curves*, Bull. Amer. Math. Soc. (N.S.)**14**(1986), no. 2, 207–259. MR**828821**, DOI 10.1090/S0273-0979-1986-15430-3 - Victor S. Miller,
*Use of elliptic curves in cryptography*, Advances in cryptology—CRYPTO ’85 (Santa Barbara, Calif., 1985) Lecture Notes in Comput. Sci., vol. 218, Springer, Berlin, 1986, pp. 417–426. MR**851432**, DOI 10.1007/3-540-39799-X_{3}1 - J. S. Milne,
*Arithmetic duality theorems*, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR**881804** - D. Mumford,
*On the equations defining abelian varieties. I*, Invent. Math.**1**(1966), 287–354. MR**204427**, DOI 10.1007/BF01389737
—, - Joseph H. Silverman,
*The arithmetic of elliptic curves*, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR**817210**, DOI 10.1007/978-1-4757-1920-8 - Joseph H. Silverman,
*Lower bound for the canonical height on elliptic curves*, Duke Math. J.**48**(1981), no. 3, 633–648. MR**630588** - Paul Vojta,
*Siegel’s theorem in the compact case*, Ann. of Math. (2)**133**(1991), no. 3, 509–548. MR**1109352**, DOI 10.2307/2944318

*The Mordell-Weil group of curves of genus*$2$, Arithmetic and Geometry, Progress in Math., vol. 35, Birkhaüser, Boston, Mass., 1983. —,

*Arithmetic of curves of genus*$2$, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, 1989.

*Abelian varieties*, Oxford Univ. Press, Oxford, 1970.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**337**(1993), 807-824 - MSC: Primary 11G10; Secondary 11G30, 14H25, 14K15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1094558-0
- MathSciNet review: 1094558