Computing the Mordell-Weil rank of Jacobians of curves of genus two
HTML articles powered by AMS MathViewer
- by Daniel M. Gordon and David Grant PDF
- Trans. Amer. Math. Soc. 337 (1993), 807-824 Request permission
Abstract:
We derive the equations necessary to perform a two-descent on the Jacobians of curves of genus two with rational Weierstrass points. We compute the Mordell-Weil rank of the Jacobian of some genus two curves defined over the rationals, and discuss the practicality of using this method.References
- Leonard M. Adleman and Ming-Deh A. Huang, Primality testing and abelian varieties over finite fields, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, Berlin, 1992. MR 1176511, DOI 10.1007/BFb0090185
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Enrico Bombieri, The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 615–640. MR 1093712
- David G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987), no. 177, 95–101. MR 866101, DOI 10.1090/S0025-5718-1987-0866101-0
- J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291. MR 199150, DOI 10.1112/jlms/s1-41.1.193 —, The Mordell-Weil group of curves of genus $2$, Arithmetic and Geometry, Progress in Math., vol. 35, Birkhaüser, Boston, Mass., 1983. —, Arithmetic of curves of genus $2$, Number Theory and Applications (R. A. Mollin, ed.), Kluwer, 1989.
- Kevin R. Coombes and David R. Grant, On heterogeneous spaces, J. London Math. Soc. (2) 40 (1989), no. 3, 385–397. MR 1053609, DOI 10.1112/jlms/s2-40.3.385
- Gerd Faltings, Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576. MR 1109353, DOI 10.2307/2944319
- Eugene Victor Flynn, The Jacobian and formal group of a curve of genus $2$ over an arbitrary ground field, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 3, 425–441. MR 1041476, DOI 10.1017/S0305004100068729
- David Grant, Formal groups in genus two, J. Reine Angew. Math. 411 (1990), 96–121. MR 1072975, DOI 10.1515/crll.1990.411.96
- Marvin J. Greenberg, Lectures on forms in many variables, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0241358
- Neal Koblitz, Hyperelliptic cryptosystems, J. Cryptology 1 (1989), no. 3, 139–150. MR 1007215, DOI 10.1007/BF02252872
- Neal Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), no. 177, 203–209. MR 866109, DOI 10.1090/S0025-5718-1987-0866109-5
- H. W. Lenstra Jr., Elliptic curves and number-theoretic algorithms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 99–120. MR 934218
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- Barry Mazur, Arithmetic on curves, Bull. Amer. Math. Soc. (N.S.) 14 (1986), no. 2, 207–259. MR 828821, DOI 10.1090/S0273-0979-1986-15430-3
- Victor S. Miller, Use of elliptic curves in cryptography, Advances in cryptology—CRYPTO ’85 (Santa Barbara, Calif., 1985) Lecture Notes in Comput. Sci., vol. 218, Springer, Berlin, 1986, pp. 417–426. MR 851432, DOI 10.1007/3-540-39799-X_{3}1
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 204427, DOI 10.1007/BF01389737 —, Abelian varieties, Oxford Univ. Press, Oxford, 1970.
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Joseph H. Silverman, Lower bound for the canonical height on elliptic curves, Duke Math. J. 48 (1981), no. 3, 633–648. MR 630588
- Paul Vojta, Siegel’s theorem in the compact case, Ann. of Math. (2) 133 (1991), no. 3, 509–548. MR 1109352, DOI 10.2307/2944318
Additional Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 337 (1993), 807-824
- MSC: Primary 11G10; Secondary 11G30, 14H25, 14K15
- DOI: https://doi.org/10.1090/S0002-9947-1993-1094558-0
- MathSciNet review: 1094558