The Koebe semigroup and a class of averaging operators on $H^ p(\textbf {D})$
HTML articles powered by AMS MathViewer
- by Aristomenis G. Siskakis
- Trans. Amer. Math. Soc. 339 (1993), 337-350
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147403-9
- PDF | Request permission
Abstract:
We study on the Hardy space ${H^p}$ the operators ${T_F}$ given by \[ {T_F}(f)(z) = \frac {1} {z}\int _0^z {f(\zeta )\frac {1} {{F(\zeta )}}\;d\zeta } \] where $F(z)$ is analytic on the unit disc $\mathbb {D}$ and has $\operatorname {Re} F(z) \geq 0$. Each such operator is closely related to a strongly continuous semigroup of weighted composition operators. By studying first an extremal such semigroup (the Koebe semigroup) we are able to obtain the upper bound ${\left \| {{T_F}} \right \|_p} \leq 2p\operatorname {Re} (1/F(0)) + |\operatorname {Im} (1/F(0))|$ for the norm. We also show that ${T_F}$ is compact on ${H^p}$ if and only if the measure $\mu$ in the Herglotz representation of $1/F$ is continuous.References
- Alexandru Aleman, Compactness of resolvent operators generated by a class of composition semigroups on $H^p$, J. Math. Anal. Appl. 147 (1990), no. 1, 171–179. MR 1044693, DOI 10.1016/0022-247X(90)90391-R —, Personal communication, 1990.
- Earl Berkson and Horacio Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101–115. MR 480965 C. Carathéodory, Theory of functions of a complex variable. II, Chelsea, New York, 1954.
- Carl C. Cowen, Subnormality of the Cesàro operator and a semigroup of composition operators, Indiana Univ. Math. J. 33 (1984), no. 2, 305–318. MR 733903, DOI 10.1512/iumj.1984.33.33017
- James A. Deddens, Analytic Toeplitz and composition operators, Canadian J. Math. 24 (1972), 859–865. MR 310691, DOI 10.4153/CJM-1972-085-8
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Jerome A. Goldstein, Semigroups of linear operators and applications, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR 790497
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- T. L. Kriete III and David Trutt, The Cesàro operator in $l^{2}$ is subnormal, Amer. J. Math. 93 (1971), 215–225. MR 281025, DOI 10.2307/2373458
- Barbara D. MacCluer and Joel H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878–906. MR 854144, DOI 10.4153/CJM-1986-043-4
- Ch. Pommerenke, On the angular derivative and univalence, Anal. Math. 3 (1977), no. 4, 291–297 (English, with Russian summary). MR 463415, DOI 10.1007/BF01906639
- Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404. MR 881273, DOI 10.2307/1971314
- Aristomenis G. Siskakis, Composition semigroups and the Cesàro operator on $H^p$, J. London Math. Soc. (2) 36 (1987), no. 1, 153–164. MR 897683, DOI 10.1112/jlms/s2-36.1.153
- Aristomenis G. Siskakis, On a class of composition semigroups in Hardy spaces, J. Math. Anal. Appl. 127 (1987), no. 1, 122–129. MR 904214, DOI 10.1016/0022-247X(87)90144-2
- Aristomenis G. Siskakis, Weighted composition semigroups on Hardy spaces, Proceedings of the symposium on operator theory (Athens, 1985), 1986, pp. 359–371. MR 872296, DOI 10.1016/0024-3795(86)90327-7
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 337-350
- MSC: Primary 47B38; Secondary 30D55, 47D03
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147403-9
- MathSciNet review: 1147403