## The Koebe semigroup and a class of averaging operators on $H^ p(\textbf {D})$

HTML articles powered by AMS MathViewer

- by Aristomenis G. Siskakis PDF
- Trans. Amer. Math. Soc.
**339**(1993), 337-350 Request permission

## Abstract:

We study on the Hardy space ${H^p}$ the operators ${T_F}$ given by \[ {T_F}(f)(z) = \frac {1} {z}\int _0^z {f(\zeta )\frac {1} {{F(\zeta )}}\;d\zeta } \] where $F(z)$ is analytic on the unit disc $\mathbb {D}$ and has $\operatorname {Re} F(z) \geq 0$. Each such operator is closely related to a strongly continuous semigroup of weighted composition operators. By studying first an extremal such semigroup (the Koebe semigroup) we are able to obtain the upper bound ${\left \| {{T_F}} \right \|_p} \leq 2p\operatorname {Re} (1/F(0)) + |\operatorname {Im} (1/F(0))|$ for the norm. We also show that ${T_F}$ is compact on ${H^p}$ if and only if the measure $\mu$ in the Herglotz representation of $1/F$ is continuous.## References

- Alexandru Aleman,
*Compactness of resolvent operators generated by a class of composition semigroups on $H^p$*, J. Math. Anal. Appl.**147**(1990), no. 1, 171–179. MR**1044693**, DOI 10.1016/0022-247X(90)90391-R
—, Personal communication, 1990.
- Earl Berkson and Horacio Porta,
*Semigroups of analytic functions and composition operators*, Michigan Math. J.**25**(1978), no. 1, 101–115. MR**480965**
C. Carathéodory, - Carl C. Cowen,
*Subnormality of the Cesàro operator and a semigroup of composition operators*, Indiana Univ. Math. J.**33**(1984), no. 2, 305–318. MR**733903**, DOI 10.1512/iumj.1984.33.33017 - James A. Deddens,
*Analytic Toeplitz and composition operators*, Canadian J. Math.**24**(1972), 859–865. MR**310691**, DOI 10.4153/CJM-1972-085-8 - Peter L. Duren,
*Theory of $H^{p}$ spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655** - Peter L. Duren,
*Univalent functions*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR**708494** - Jerome A. Goldstein,
*Semigroups of linear operators and applications*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1985. MR**790497** - Kenneth Hoffman,
*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0133008** - T. L. Kriete III and David Trutt,
*The Cesàro operator in $l^{2}$ is subnormal*, Amer. J. Math.**93**(1971), 215–225. MR**281025**, DOI 10.2307/2373458 - Barbara D. MacCluer and Joel H. Shapiro,
*Angular derivatives and compact composition operators on the Hardy and Bergman spaces*, Canad. J. Math.**38**(1986), no. 4, 878–906. MR**854144**, DOI 10.4153/CJM-1986-043-4 - Ch. Pommerenke,
*On the angular derivative and univalence*, Anal. Math.**3**(1977), no. 4, 291–297 (English, with Russian summary). MR**463415**, DOI 10.1007/BF01906639 - Joel H. Shapiro,
*The essential norm of a composition operator*, Ann. of Math. (2)**125**(1987), no. 2, 375–404. MR**881273**, DOI 10.2307/1971314 - Aristomenis G. Siskakis,
*Composition semigroups and the Cesàro operator on $H^p$*, J. London Math. Soc. (2)**36**(1987), no. 1, 153–164. MR**897683**, DOI 10.1112/jlms/s2-36.1.153 - Aristomenis G. Siskakis,
*On a class of composition semigroups in Hardy spaces*, J. Math. Anal. Appl.**127**(1987), no. 1, 122–129. MR**904214**, DOI 10.1016/0022-247X(87)90144-2 - Aristomenis G. Siskakis,
*Weighted composition semigroups on Hardy spaces*, Proceedings of the symposium on operator theory (Athens, 1985), 1986, pp. 359–371. MR**872296**, DOI 10.1016/0024-3795(86)90327-7

*Theory of functions of a complex variable*. II, Chelsea, New York, 1954.

## Additional Information

- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**339**(1993), 337-350 - MSC: Primary 47B38; Secondary 30D55, 47D03
- DOI: https://doi.org/10.1090/S0002-9947-1993-1147403-9
- MathSciNet review: 1147403