Reflecting Brownian motion in a cusp
HTML articles powered by AMS MathViewer
- by R. Dante DeBlassie and Ellen H. Toby
- Trans. Amer. Math. Soc. 339 (1993), 297-321
- DOI: https://doi.org/10.1090/S0002-9947-1993-1149119-1
- PDF | Request permission
Abstract:
Let $C$ be the cusp $\{ (x,y):x \geq 0$, $- {x^\beta } \leq y \leq {x^\beta }\}$ where $\beta > 1$. Set $\partial {C_1} = \{ (x,y):x \geq 0, y = - {x^\beta }\}$ and $\partial {C_2} = \{ (x,y):x \geq 0$, $y = {x^\beta }\}$. We study the existence and uniqueness in law of reflecting Brownian motion in $C$. The angle of reflection at $\partial {C_j}\backslash \{ 0\}$ (relative to the inward unit normal) is a constant ${\theta _j} \in \left ( { - \frac {\pi } {2},\frac {\pi } {2}} \right )$, and is positive iff the direction of reflection has a negative first component in all sufficiently small neighborhoods of $0$. When ${\theta _1} + {\theta _2} \leq 0$, existence and uniqueness in law hold. When ${\theta _1} + {\theta _2} > 0$, existence fails. We also obtain results for a large class of asymmetric cusps. We make essential use of results of Warschawski on the differentiability at the boundary of conformal maps.References
- R. Dante DeBlassie, Explicit semimartingale representation of Brownian motion in a wedge, Stochastic Process. Appl. 34 (1990), no. 1, 67–97. MR 1039563, DOI 10.1016/0304-4149(90)90057-Y
- Krzysztof Burdzy and Donald Marshall, Hitting a boundary point with reflected Brownian motion, Séminaire de Probabilités, XXVI, Lecture Notes in Math., vol. 1526, Springer, Berlin, 1992, pp. 81–94. MR 1231985, DOI 10.1007/BFb0084312
- L. C. G. Rogers, Brownian motion in a wedge with variable skew reflection, Trans. Amer. Math. Soc. 326 (1991), no. 1, 227–236. MR 1008701, DOI 10.1090/S0002-9947-1991-1008701-0
- L. C. G. Rogers, Brownian motion in a wedge with variable skew reflection. II, Diffusion processes and related problems in analysis, Vol. I (Evanston, IL, 1989) Progr. Probab., vol. 22, Birkhäuser Boston, Boston, MA, 1990, pp. 95–115. MR 1110159
- L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 2, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1987. Itô calculus. MR 921238
- Daniel W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure Appl. Math. 24 (1971), 147–225. MR 277037, DOI 10.1002/cpa.3160240206
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
- S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), no. 4, 405–443. MR 792398, DOI 10.1002/cpa.3160380405
- S. E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280–335. MR 6583, DOI 10.1090/S0002-9947-1942-0006583-6
- S. E. Warschawski, On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614–620. MR 131524, DOI 10.1090/S0002-9939-1961-0131524-8
- R. J. Williams, Recurrence classification and invariant measure for reflected Brownian motion in a wedge, Ann. Probab. 13 (1985), no. 3, 758–778. MR 799421
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 339 (1993), 297-321
- MSC: Primary 60J60; Secondary 60H99, 60J65
- DOI: https://doi.org/10.1090/S0002-9947-1993-1149119-1
- MathSciNet review: 1149119