## Vaught’s conjecture for varieties

HTML articles powered by AMS MathViewer

- by Bradd Hart, Sergei Starchenko and Matthew Valeriote PDF
- Trans. Amer. Math. Soc.
**342**(1994), 173-196 Request permission

## Abstract:

We prove that if $\mathcal {V}$ is a superstable variety or one with few countable models then $\mathcal {V}$ is the varietal product of an affine variety and a combinatorial variety. Vaught’s conjecture for varieties is an immediate consequence.## References

- J. T. Baldwin and A. H. Lachlan,
*On universal Horn classes categorical in some infinte power*, Algebra Universalis**3**(1973), 98–111. MR**351785**, DOI 10.1007/BF02945108 - John T. Baldwin and Ralph N. McKenzie,
*Counting models in universal Horn classes*, Algebra Universalis**15**(1982), no. 3, 359–384. MR**689770**, DOI 10.1007/BF02483731 - Walter Baur,
*$\aleph _{0}$-categorical modules*, J. Symbolic Logic**40**(1975), 213–220. MR**369047**, DOI 10.2307/2271901 - Saharon Shelah and Steven Buechler,
*On the existence of regular types*, Ann. Pure Appl. Logic**45**(1989), no. 3, 277–308. MR**1032833**, DOI 10.1016/0168-0072(89)90039-0 - Steven Garavaglia,
*Decomposition of totally transcendental modules*, J. Symbolic Logic**45**(1980), no. 1, 155–164. MR**560233**, DOI 10.2307/2273362 - Steven Givant,
*Universal Horn classes categorical or free in power*, Ann. Math. Logic**15**(1978), no. 1, 1–53. MR**511942**, DOI 10.1016/0003-4843(78)90025-6 - Steven Givant,
*A representation theorem for universal Horn classes categorical in power*, Ann. Math. Logic**17**(1979), no. 1-2, 91–116. MR**552417**, DOI 10.1016/0003-4843(79)90022-6 - L. Harrington and M. Makkai,
*An exposition of Shelah’s “main gap”: counting uncountable models of $\omega$-stable and superstable theories*, Notre Dame J. Formal Logic**26**(1985), no. 2, 139–177. MR**783594**, DOI 10.1305/ndjfl/1093870822 - Christian Herrmann,
*Affine algebras in congruence modular varieties*, Acta Sci. Math. (Szeged)**41**(1979), no. 1-2, 119–125. MR**534504** - Bradd Hart and Sergei Starchenko,
*Addendum to: “A structure theorem for strongly abelian varieties with few models” [J. Symbolic Logic 56 (1991), no. 3, 832–852; MR1129148 (93a:03031)] by Hart and Matthew Valeriote*, J. Symbolic Logic**58**(1993), no. 4, 1419–1425. MR**1253930**, DOI 10.2307/2275151 - Bradd Hart and Matthew Valeriote,
*A structure theorem for strongly abelian varieties with few models*, J. Symbolic Logic**56**(1991), no. 3, 832–852. MR**1129148**, DOI 10.2307/2275053 - Bradd Hart,
*An exposition of OTOP*, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 107–126. MR**1033025**, DOI 10.1007/BFb0082234 - David Hobby and Ralph McKenzie,
*The structure of finite algebras*, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR**958685**, DOI 10.1090/conm/076 - D. Lascar,
*Quelques précisions sur la DOP et la profondeur d’une théorie*, J. Symbolic Logic**50**(1985), no. 2, 316–330 (French, with English summary). MR**793109**, DOI 10.2307/2274217 - Ralph McKenzie,
*Categorical quasivarieties revisited*, Algebra Universalis**19**(1984), no. 3, 273–303. MR**779145**, DOI 10.1007/BF01201096 - Ralph McKenzie and Matthew Valeriote,
*The structure of decidable locally finite varieties*, Progress in Mathematics, vol. 79, Birkhäuser Boston, Inc., Boston, MA, 1989. MR**1033992**, DOI 10.1007/978-1-4612-4552-0 - T. G. Mustafin,
*The stability theory of polygons*, Trudy Inst. Mat. (Novosibirsk)**8**(1988), no. Teor. Model. i ee Primenen., 92–108, 184 (Russian). MR**957500** - E. A. Paljutin,
*Categorical positive Horn theories*, Algebra i Logika**18**(1979), no. 1, 47–72, 122 (Russian). MR**566774**
—, - E. A. Palyutin,
*Spectra of varieties*, Dokl. Akad. Nauk SSSR**306**(1989), no. 4, 789–790 (Russian); English transl., Soviet Math. Dokl.**39**(1989), no. 3, 553–554. MR**1014745** - E. A. Palyutin and S. S. Starchenko,
*Spectra of Horn classes*, Dokl. Akad. Nauk SSSR**290**(1986), no. 6, 1298–1300 (Russian). MR**866207** - Robert W. Quackenbush,
*Quasi-affine algebras*, Algebra Universalis**20**(1985), no. 3, 318–327. MR**811692**, DOI 10.1007/BF01195141 - S. Shelah,
*Classification theory and the number of nonisomorphic models*, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990. MR**1083551**

*The description of categorical quasivarieties*, Algebra and Logic

**14**(1976), 86-111.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**342**(1994), 173-196 - MSC: Primary 03C45; Secondary 03C05, 03C60, 08B99
- DOI: https://doi.org/10.1090/S0002-9947-1994-1191612-0
- MathSciNet review: 1191612