Multiplier Hopf algebras
HTML articles powered by AMS MathViewer
- by A. Van Daele PDF
- Trans. Amer. Math. Soc. 342 (1994), 917-932 Request permission
Abstract:
In this paper we generalize the notion of Hopf algebra. We consider an algebra A, with or without identity, and a homomorphism $\Delta$ from A to the multiplier algebra $M(A \otimes A)$ of $A \otimes A$. We impose certain conditions on $\Delta$ (such as coassociativity). Then we call the pair $(A,\Delta )$ a multiplier Hopf algebra. The motivating example is the case where A is the algebra of complex, finitely supported functions on a group G and where $(\Delta f)(s,t) = f(st)$ with $s,t \in G$ and $f \in A$. We prove the existence of a counit and an antipode. If A has an identity, we have a usual Hopf algebra. We also consider the case where A is a $\ast$-algebra. Then we show that (a large enough) subspace of the dual space can also be made into a $\ast$-algebra.References
- Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980. Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka. MR 594432
- Saad Baaj and Georges Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbres, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 425–488 (French, with English summary). MR 1235438, DOI 10.24033/asens.1677 M. E. Sweedler, Hopf algebras, Math. Lecture Notes Ser., Benjamin, New York, 1969.
- A. Van Daele, Dual pairs of Hopf $*$-algebras, Bull. London Math. Soc. 25 (1993), no. 3, 209–230. MR 1209245, DOI 10.1112/blms/25.3.209 —, Discrete quantum groups, preprint K. U. Leuven (August 1993).
- S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665. MR 901157, DOI 10.1007/BF01219077
Additional Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 342 (1994), 917-932
- MSC: Primary 16W30
- DOI: https://doi.org/10.1090/S0002-9947-1994-1220906-5
- MathSciNet review: 1220906