Multivariate orthogonal polynomials and operator theory
HTML articles powered by AMS MathViewer
 by Yuan Xu PDF
 Trans. Amer. Math. Soc. 343 (1994), 193202 Request permission
Abstract:
The multivariate orthogonal polynomials are related to a family of commuting selfadjoint operators. The spectral theorem for these operators is used to prove that a polynomial sequence satisfying a vectormatrix form of the threeterm relation is orthonormal with a determinate measure.References

N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Ungar, New York, 1961.
 Sterling K. Berberian, Notes on spectral theory, Van Nostrand Mathematical Studies, No. 5, D. Van Nostrand Co., Inc., Princeton, N.J.Toronto, Ont.London, 1966. MR 0190760
 Christian Berg, The multidimensional moment problem and semigroups, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 110–124. MR 921086, DOI 10.1090/psapm/037/921086
 M. Bertran, Note on orthogonal polynomials in $v$variables, SIAM J. Math. Anal. 6 (1975), 250–257. MR 364705, DOI 10.1137/0506025
 T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New YorkLondonParis, 1978. MR 0481884
 J. Dombrowski, Orthogonal polynomials and functional analysis, Orthogonal polynomials (Columbus, OH, 1989) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 294, Kluwer Acad. Publ., Dordrecht, 1990, pp. 147–161. MR 1100292, DOI 10.1007/9789400905016_{7}
 Joanne Dombrowski, Tridiagonal matrix representations of cyclic selfadjoint operators, Pacific J. Math. 114 (1984), no. 2, 325–334. MR 757504
 Bent Fuglede, The multidimensional moment problem, Exposition. Math. 1 (1983), no. 1, 47–65. MR 693807
 M. A. Kowalski, The recursion formulas for orthogonal polynomials in $n$ variables, SIAM J. Math. Anal. 13 (1982), no. 2, 309–315. MR 647128, DOI 10.1137/0513022
 H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. (4) 76 (1967), 325–376. MR 228920, DOI 10.1007/BF02412238
 Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331
 Eduard Prugovečki, Quantum mechanics in Hilbert space, 2nd ed., Pure and Applied Mathematics, vol. 92, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1981. MR 630533
 Frigyes Riesz and Béla Sz.Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
 B. D. Sleeman, Multiparameter spectral theory in Hilbert space, J. Math. Anal. Appl. 65 (1978), no. 3, 511–530. MR 510467, DOI 10.1016/0022247X(78)901609
 Marshall Harvey Stone, Linear transformations in Hilbert space, American Mathematical Society Colloquium Publications, vol. 15, American Mathematical Society, Providence, RI, 1990. Reprint of the 1932 original. MR 1451877, DOI 10.1090/coll/015 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R.I., 4th ed., 1975.
 Yuan Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993), no. 3, 783–794. MR 1215438, DOI 10.1137/0524048
Additional Information
 © Copyright 1994 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 343 (1994), 193202
 MSC: Primary 42C05; Secondary 47A57, 47B15
 DOI: https://doi.org/10.1090/S0002994719941169912X
 MathSciNet review: 1169912