Pseudocircles in dynamical systems
HTML articles powered by AMS MathViewer
- by Judy A. Kennedy and James A. Yorke
- Trans. Amer. Math. Soc. 343 (1994), 349-366
- DOI: https://doi.org/10.1090/S0002-9947-1994-1187029-5
- PDF | Request permission
Abstract:
We construct an example of a ${C^\infty }$ map on a 3-manifold which has an invariant set with an uncountable number of components, each of which is a pseudocircle. Furthermore, any map which is sufficiently close (in the ${C^1}$-metric) to the constructed map has a similar set.References
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451
- Lawrence Fearnley, The pseudo-circle is not homogeneous, Bull. Amer. Math. Soc. 75 (1969), 554–558. MR 242126, DOI 10.1090/S0002-9904-1969-12241-X
- Lawrence Fearnley, The pseudo-circle is unique, Bull. Amer. Math. Soc. 75 (1969), 398–401. MR 246265, DOI 10.1090/S0002-9904-1969-12193-2
- Michael Handel, A pathological area preserving $C^{\infty }$ diffeomorphism of the plane, Proc. Amer. Math. Soc. 86 (1982), no. 1, 163–168. MR 663889, DOI 10.1090/S0002-9939-1982-0663889-6
- Michael-R. Herman, Construction of some curious diffeomorphisms of the Riemann sphere, J. London Math. Soc. (2) 34 (1986), no. 2, 375–384. MR 856520, DOI 10.1112/jlms/s2-34.2.375
- Judy Kennedy and James T. Rogers Jr., Orbits of the pseudocircle, Trans. Amer. Math. Soc. 296 (1986), no. 1, 327–340. MR 837815, DOI 10.1090/S0002-9947-1986-0837815-9
- J. Krasinkiewicz, Mapping properties of hereditarily indecomposable continua, Houston J. Math. 8 (1982), no. 4, 507–516. MR 688251
- Richard Moeckel, Rotations of the closures of some simply connected domains, Complex Variables Theory Appl. 4 (1985), no. 3, 285–294. MR 801645, DOI 10.1080/17476938508814113
- L. G. Oversteegen and E. D. Tymchatyn, On hereditarily indecomposable compacta, Geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 407–417. MR 925879
- Ch. Pommerenke and B. Rodin, Intrinsic rotations of simply connected regions. II, Complex Variables Theory Appl. 4 (1985), no. 3, 223–232. MR 801639, DOI 10.1080/17476938508814107
- James T. Rogers Jr., The pseudo-circle is not homogeneous, Trans. Amer. Math. Soc. 148 (1970), 417–428. MR 256362, DOI 10.1090/S0002-9947-1970-0256362-7
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 349-366
- MSC: Primary 58F15; Secondary 54F15, 54F50, 54H20, 58F20
- DOI: https://doi.org/10.1090/S0002-9947-1994-1187029-5
- MathSciNet review: 1187029