Fibrations of classifying spaces
HTML articles powered by AMS MathViewer
- by Kenshi Ishiguro and Dietrich Notbohm
- Trans. Amer. Math. Soc. 343 (1994), 391-415
- DOI: https://doi.org/10.1090/S0002-9947-1994-1231336-4
- PDF | Request permission
Abstract:
We investigate fibrations of the form $Z \to Y \to X$, where two of the three spaces are classifying spaces of compact connected Lie groups. We obtain certain finiteness conditions on the third space which make it also a classifying space. Our results allow to express some of the basic notions in group theory in terms of homotopy theory, i.e., in terms of classifying spaces. As an application we prove that every retract of the classifying space of a compact connected Lie group is again a classifying space.References
- J. F. Adams and Z. Mahmud, Maps between classifying spaces, Inv. Math. 35 (1976), 1–41. MR 0423352, DOI 10.1007/BF01390132
- J. Frank Adams and Zdzisław Wojtkowiak, Maps between $p$-completed classifying spaces, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 3-4, 231–235. MR 1014652, DOI 10.1017/S0308210500018692
- Armand Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397–432. MR 72426, DOI 10.1090/S0002-9904-1955-09936-1
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- Carles Casacuberta, The behaviour of homology in the localization of finite groups, Canad. Math. Bull. 34 (1991), no. 3, 311–320. MR 1127752, DOI 10.4153/CMB-1991-051-5
- William G. Dwyer and Clarence W. Wilkerson, Spaces of null homotopic maps, Astérisque 191 (1990), 6, 97–108. International Conference on Homotopy Theory (Marseille-Luminy, 1988). MR 1098969
- W. Dwyer and A. Zabrodsky, Maps between classifying spaces, Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, Berlin, 1987, pp. 106–119. MR 928826, DOI 10.1007/BFb0083003
- Kenshi Ishiguro, Unstable Adams operations on classifying spaces, Math. Proc. Cambridge Philos. Soc. 102 (1987), no. 1, 71–75. MR 886436, DOI 10.1017/S0305004100067050
- Kenshi Ishiguro, Classifying spaces of compact simple Lie groups and $p$-tori, Algebraic topology (San Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509, Springer, Berlin, 1992, pp. 210–226. MR 1185971, DOI 10.1007/BFb0087511
- Kenshi Ishiguro, Retracts of classifying spaces, Adams Memorial Symposium on Algebraic Topology, 1 (Manchester, 1990) London Math. Soc. Lecture Note Ser., vol. 175, Cambridge Univ. Press, Cambridge, 1992, pp. 271–280. MR 1170585, DOI 10.1017/CBO9780511526305.020
- Stefan Jackowski, James McClure, and Bob Oliver, Homotopy classification of self-maps of $BG$ via $G$-actions. I, Ann. of Math. (2) 135 (1992), no. 1, 183–226. MR 1147962, DOI 10.2307/2946568 —, Self homotopy equivalences of BG, preprint.
- Jean Lannes, Sur les espaces fonctionnels dont la source est le classifiant d’un $p$-groupe abélien élémentaire, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 135–244 (French). With an appendix by Michel Zisman. MR 1179079
- Haynes Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87. MR 750716, DOI 10.2307/2007071
- Guido Mislin and Jacques Thévenaz, The $Z^*$-theorem for compact Lie groups, Math. Ann. 291 (1991), no. 1, 103–111. MR 1125010, DOI 10.1007/BF01445193
- Dietrich Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), no. 1, 153–168. MR 1106820, DOI 10.1007/BF02571382 —, Maps between classifying spaces and applications (to appear).
- Dietrich Notbohm, Fake Lie groups with maximal tori. IV, Math. Ann. 294 (1992), no. 1, 109–116. MR 1180453, DOI 10.1007/BF01934316
- Dietrich Notbohm, Homotopy uniqueness of classifying spaces of compact connected Lie groups at primes dividing the order of the Weyl group, Topology 33 (1994), no. 2, 271–330. MR 1273786, DOI 10.1016/0040-9383(94)90015-9 —, Kernels of maps between classifying spaces, Math. Gott. Heft 17 (1992).
- Dietrich Notbohm and Larry Smith, Fake Lie groups and maximal tori. I, II, Math. Ann. 288 (1990), no. 4, 637–661, 663–673. MR 1081269, DOI 10.1007/BF01444556
- Dietrich Notbohm and Larry Smith, Fake Lie groups and maximal tori. I, II, Math. Ann. 288 (1990), no. 4, 637–661, 663–673. MR 1081269, DOI 10.1007/BF01444556
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- David L. Rector, Subgroups of finite dimensional topological groups, J. Pure Appl. Algebra 1 (1971), no. 3, 253–273. MR 301734, DOI 10.1016/0022-4049(71)90021-1 —, Loop structures on the homotopy type of ${S^3}$, Lecture Notes in Math., vol. 418, Springer-Verlag, Berlin and New York, 1974, pp. 121-138.
- David Rector and James Stasheff, Lie groups from a homotopy point of view, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Lecture Notes in Math., Vol. 418, Springer, Berlin, 1974, pp. 121–131. MR 0377868
- James Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239–246. MR 154286, DOI 10.1016/0040-9383(63)90006-5
- Richard G. Swan, The $p$-period of a finite group, Illinois J. Math. 4 (1960), 341–346. MR 122856 D. Sullivan, Geometric topology. I: Localisations periodicity, and Galois symmetry, MIT notes, 1970.
- Clarence Wilkerson, Self-maps of classifying spaces, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Lecture Notes in Math., Vol. 418, Springer, Berlin, 1974, pp. 150–157. MR 0383444
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 391-415
- MSC: Primary 55R35
- DOI: https://doi.org/10.1090/S0002-9947-1994-1231336-4
- MathSciNet review: 1231336