Some cubic modular identities of Ramanujan
HTML articles powered by AMS MathViewer
- by J. M. Borwein, P. B. Borwein and F. G. Garvan
- Trans. Amer. Math. Soc. 343 (1994), 35-47
- DOI: https://doi.org/10.1090/S0002-9947-1994-1243610-6
- PDF | Request permission
Abstract:
There is a beautiful cubic analogue of Jacobi’s fundamental theta function identity: $\theta _3^4 = \theta _4^4 + \theta _2^4$. It is \[ {\left ({\sum \limits _{n,m = - \infty }^\infty {{q^{{n^2} + nm + {m^2}}}} } \right )^3} = {\left ({\sum \limits _{n,m = - \infty }^\infty {{\omega ^{n - m}}{q^{{n^2} + nm + {m^2}}}} } \right )^3} + {\left ({\sum \limits _{n,m = - \infty }^\infty {{q^{{{(n + \frac {1}{3})}^2} + (n + \frac {1}{3})(m + \frac {1}{3}) + {{(m + \frac {1}{3})}^2}}}} } \right )^3}.\] Here $\omega = \exp (2\pi i/3)$. In this note we provide an elementary proof of this identity and of a related identity due to Ramanujan. We also indicate how to discover and prove such identities symbolically.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- Richard Bellman, A brief introduction to theta functions, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York, 1961. MR 0125252, DOI 10.1017/s0025557200044491
- Bruce C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, 1991. MR 1117903, DOI 10.1007/978-1-4612-0965-2
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), no. 2, 691–701. MR 1010408, DOI 10.1090/S0002-9947-1991-1010408-0 —, A remarkable cubic iteration, Computational Methods and Function Theory, Lecture Notes in Math., vol. 1435, Springer-Verlag, New York, 1990.
- John A. Ewell, On the enumerator for sums of three squares, Fibonacci Quart. 24 (1986), no. 2, 150–153. MR 843964
- Nathan J. Fine, Basic hypergeometric series and applications, Mathematical Surveys and Monographs, vol. 27, American Mathematical Society, Providence, RI, 1988. With a foreword by George E. Andrews. MR 956465, DOI 10.1090/surv/027 O. Kolberg, Note on the Eisenstein series of ${\Gamma _0}(p)$, Universitet i Bergen Årbok, Naturvitenskapelig rekke, Nr. 15, 1959.
- Louis W. Kolitsch, A congruence for generalized Frobenius partitions with $3$ colors modulo powers of $3$, Analytic number theory (Allerton Park, IL, 1989) Progr. Math., vol. 85, Birkhäuser Boston, Boston, MA, 1990, pp. 343–348. MR 1084189 L. Lorenz, Bidrag til tallenes theori, Tidsskrift for Mathematik (3) 1 (1871), 97-114.
- Srinivasa Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957. MR 0099904
- Srinivasa Ramanujan, The lost notebook and other unpublished papers, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. With an introduction by George E. Andrews. MR 947735
- Bruno Schoeneberg, Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR 0412107
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 343 (1994), 35-47
- MSC: Primary 11B65; Secondary 11F27, 33D10
- DOI: https://doi.org/10.1090/S0002-9947-1994-1243610-6
- MathSciNet review: 1243610