$F$-regularity, test elements, and smooth base change
HTML articles powered by AMS MathViewer
- by Melvin Hochster and Craig Huneke
- Trans. Amer. Math. Soc. 346 (1994), 1-62
- DOI: https://doi.org/10.1090/S0002-9947-1994-1273534-X
- PDF | Request permission
Abstract:
This paper deals with tight closure theory in positive characteristic. After a good deal of preliminary work in the first five sections, including a treatment of $F$-rationality and a treatment of $F$-regularity for Gorenstein rings, a very widely applicable theory of test elements for tight closure is developed in $\S 6$ and is then applied in $\S 7$ to prove that both tight closure and $F$-regularity commute with smooth base change under many circumstances (where "smooth" is used to mean flat with geometrically regular fibers). For example, it is shown in $\S 6$ that for a reduced ring $R$ essentially of finite type over an excellent local ring of characteristic $p$, if $c$ is not in any minimal prime of $R$ and ${R_c}$ is regular, then $c$ has a power that is a test element. It is shown in $\S 7$ that if $S$ is a flat $R$-algebra with regular fibers and $R$ is $F$-regular then $S$ is $F$-regular. The general problem of showing that tight closure commutes with smooth base change remains open, but is reduced here to showing that tight closure commutes with localization.References
- I. M. Aberbach, Finite phantom projective dimension, Amer. J. Math. 116 (1994), no. 2, 447–477. MR 1269611, DOI 10.2307/2374936
- Ian M. Aberbach, Test elements in excellent rings with an application to the uniform Artin-Rees property, Proc. Amer. Math. Soc. 118 (1993), no. 2, 355–363. MR 1129869, DOI 10.1090/S0002-9939-1993-1129869-9 —, Tight closure in $F$-rational rings, Nagoya Math. J. (to appear).
- Ian M. Aberbach, Melvin Hochster, and Craig Huneke, Localization of tight closure and modules of finite phantom projective dimension, J. Reine Angew. Math. 434 (1993), 67–114. MR 1195691, DOI 10.1515/crll.1993.434.67
- Jean-François Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68 (French). MR 877006, DOI 10.1007/BF01405091
- Henri Skoda and Joël Briançon, Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de $\textbf {C}^{n}$, C. R. Acad. Sci. Paris Sér. A 278 (1974), 949–951 (French). MR 340642
- Sankar P. Dutta, On the canonical element conjecture, Trans. Amer. Math. Soc. 299 (1987), no. 2, 803–811. MR 869233, DOI 10.1090/S0002-9947-1987-0869233-2 A. Grothendieck (rédigés avec la collaboration de J. Dieudonné), Éléments de géométrie algébrique IV: Étude local des schémas et des morphismes de schémas (Seconde partie), Inst. Hautes Etudes Sci. Publ. Math. 24 (1965), 1-231.
- E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. MR 632842, DOI 10.2307/1971296 —, Syzygies, London Math. Soc. Lecture Note Ser., vol. 106, Cambridge Univ. Press, London and New York, 1985.
- E. Graham Evans Jr. and Phillip A. Griffith, Order ideals, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 213–225. MR 1015519, DOI 10.1007/978-1-4612-3660-3_{1}0
- Richard Fedder and Keiichi Watanabe, A characterization of $F$-regularity in terms of $F$-purity, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 227–245. MR 1015520, DOI 10.1007/978-1-4612-3660-3_{1}1 D. J. Glassbrenner, Invariant rings of group actions, determinantal rings, and tight closure, Thesis, Univ. of Michigan, 1992.
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 0224620, DOI 10.1007/BFb0073971
- M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43. MR 349656, DOI 10.1017/S0027763000015701
- Melvin Hochster, Topics in the homological theory of modules over commutative rings, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974. MR 0371879, DOI 10.1090/cbms/024
- Melvin Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Conference on Commutative Algebra—1975 (Queen’s Univ., Kingston, Ont., 1975) Queen’s Papers on Pure and Applied Math., No. 42, Queen’s Univ., Kingston, Ont., 1975, pp. 106–195. MR 0396544
- Melvin Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 (1977), no. 2, 463–488. MR 463152, DOI 10.1090/S0002-9947-1977-0463152-5
- Melvin Hochster, Some applications of the Frobenius in characteristic $0$, Bull. Amer. Math. Soc. 84 (1978), no. 5, 886–912. MR 485848, DOI 10.1090/S0002-9904-1978-14531-5
- Melvin Hochster, Cohen-Macaulay rings and modules, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 291–298. MR 562618
- Melvin Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. MR 723406, DOI 10.1016/0021-8693(83)90092-3
- Melvin Hochster, Solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 103–172. MR 1266182, DOI 10.1090/conm/159/01508
- Melvin Hochster, Tight closure in equal characteristic, big Cohen-Macaulay algebras, and solid closure, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 173–196. MR 1266183, DOI 10.1090/conm/159/01507
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- Melvin Hochster and Craig Huneke, Tightly closed ideals, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 1, 45–48. MR 919658, DOI 10.1090/S0273-0979-1988-15592-9
- Melvin Hochster and Craig Huneke, Tight closure, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 305–324. MR 1015524, DOI 10.1007/978-1-4612-3660-3_{1}5 —, Tight closure and strong $F$-regularity, Mém. Soc. Math. France 38 (1989), 119-133.
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, Absolute integral closures are big Cohen-Macaulay algebras in characteristic $P$, Bull. Amer. Math. Soc. (N.S.) 24 (1991), no. 1, 137–143. MR 1056558, DOI 10.1090/S0273-0979-1991-15970-7
- Melvin Hochster and Craig Huneke, Tight closure and elements of small order in integral extensions, J. Pure Appl. Algebra 71 (1991), no. 2-3, 233–247. MR 1117636, DOI 10.1016/0022-4049(91)90149-V
- Melvin Hochster and Craig Huneke, Infinite integral extensions and big Cohen-Macaulay algebras, Ann. of Math. (2) 135 (1992), no. 1, 53–89. MR 1147957, DOI 10.2307/2946563
- Melvin Hochster and Craig Huneke, Phantom homology, Mem. Amer. Math. Soc. 103 (1993), no. 490, vi+91. MR 1144758, DOI 10.1090/memo/0490
- Melvin Hochster and Craig Huneke, Tight closure of parameter ideals and splitting in module-finite extensions, J. Algebraic Geom. 3 (1994), no. 4, 599–670. MR 1297848 —, Tight closure in equal characteristic zero (in preparation).
- Melvin Hochster and Craig Huneke, Applications of the existence of big Cohen-Macaulay algebras, Adv. Math. 113 (1995), no. 1, 45–117. MR 1332808, DOI 10.1006/aima.1995.1035
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR 417172, DOI 10.1016/0001-8708(76)90073-6
- Craig Huneke, An algebraist commuting in Berkeley, Math. Intelligencer 11 (1989), no. 1, 40–52. MR 979023, DOI 10.1007/BF03023775
- Craig Huneke, Absolute integral closure and big Cohen-Macaulay algebras, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 339–349. MR 1159222
- Craig Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), no. 1, 203–223. MR 1135470, DOI 10.1007/BF01231887
- George Kempf, The Hochster-Roberts theorem of invariant theory, Michigan Math. J. 26 (1979), no. 1, 19–32. MR 514958
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 432625, DOI 10.2307/2374038
- Joseph Lipman and Avinash Sathaye, Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J. 28 (1981), no. 2, 199–222. MR 616270
- Joseph Lipman and Bernard Teissier, Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J. 28 (1981), no. 1, 97–116. MR 600418
- Frank Ma, Splitting in integral extensions, Cohen-Macaulay modules and algebras, J. Algebra 116 (1988), no. 1, 176–195. MR 944154, DOI 10.1016/0021-8693(88)90200-1
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119 (French). MR 374130, DOI 10.1007/BF02685877
- Christian Peskine and Lucien Szpiro, Syzygies et multiplicités, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421–1424 (French). MR 349659
- Paul Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. École Norm. Sup. (4) 9 (1976), no. 1, 103–106. MR 399075, DOI 10.24033/asens.1305
- Paul Roberts, Cohen-Macaulay complexes and an analytic proof of the new intersection conjecture, J. Algebra 66 (1980), no. 1, 220–225. MR 591254, DOI 10.1016/0021-8693(80)90121-0
- Paul Roberts, The vanishing of intersection multiplicities of perfect complexes, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 127–130. MR 799793, DOI 10.1090/S0273-0979-1985-15394-7
- Paul Roberts, Le théorème d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 7, 177–180 (French, with English summary). MR 880574
- Paul Roberts, Intersection theorems, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 417–436. MR 1015532, DOI 10.1007/978-1-4612-3660-3_{2}3 J.-P. Serre, Algèbre locale: Multiplicités, Lecture Notes in Math., vol. 11, Springer-Verlag, Berlin, Heidelberg, and New York, 1965. P. Deligne avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie, et J. L. Verdier, Cohomologie étale (Sém. Géométrie Algébrique du Bois-Marie $4\tfrac {1} {2}$), Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin, Heidelberg, and New York, 1977.
- Henri Skoda, Application des techniques $L^{2}$ à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4) 5 (1972), 545–579 (French). MR 333246, DOI 10.24033/asens.1237
- K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), no. 1, 41–60. MR 1248078, DOI 10.1007/BF01231753
- K. E. Smith, Tight closure of parameter ideals, Invent. Math. 115 (1994), no. 1, 41–60. MR 1248078, DOI 10.1007/BF01231753 —, $F$-rational rings have rational singularities, preprint.
- Irena Swanson, Joint reductions, tight closure, and the Briançon-Skoda theorem, J. Algebra 147 (1992), no. 1, 128–136. MR 1154678, DOI 10.1016/0021-8693(92)90256-L —, Tight closure, joint reductions, and mixed multiplicities, Thesis, Purdue Univ., 1992. J. Velez, Openness of the $F$-rational locus, smooth base change, and Koh’s conjecture, Thesis, Univ. of Michigan, 1993. —, Openness of the $F$-rational locus and smooth base change, J. Algebra (to appear). K.-I. Watanabe, Study of $F$-purity in dimension two, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Vol. II, Kinokuniya, Tokyo, 1988, pp. 791-800.
- Keiichi Watanabe, $F$-regular and $F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), no. 2-3, 341–350. MR 1117644, DOI 10.1016/0022-4049(91)90157-W
- Kei-ichi Watanabe, Takeshi Ishikawa, Sadao Tachibana, and Kayo Otsuka, On tensor products of Gorenstein rings, J. Math. Kyoto Univ. 9 (1969), 413–423. MR 257062, DOI 10.1215/kjm/1250523903 L. Williams, Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism, Thesis, Univ. of Michigan, 1992.
- Lori J. Williams, Uniform stability of kernels of Koszul cohomology indexed by the Frobenius endomorphism, J. Algebra 172 (1995), no. 3, 721–743. MR 1324179, DOI 10.1006/jabr.1995.1067
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 346 (1994), 1-62
- MSC: Primary 13A35; Secondary 13B99, 13F40
- DOI: https://doi.org/10.1090/S0002-9947-1994-1273534-X
- MathSciNet review: 1273534