## A norm convergence result on random products of relaxed projections in Hilbert space

HTML articles powered by AMS MathViewer

- by H. H. Bauschke PDF
- Trans. Amer. Math. Soc.
**347**(1995), 1365-1373 Request permission

## Abstract:

Suppose $X$ is a Hilbert space and ${C_1}, \ldots ,{C_N}$ are closed convex intersecting subsets with projections ${P_1}, \ldots ,{P_N}$. Suppose further $r$ is a mapping from $\mathbb {N}$ onto $\{ 1, \ldots ,N\}$ that assumes every value infinitely often. We prove (a more general version of) the following result: If the $N$-tuple $({C_1}, \ldots ,{C_N})$ is "innately boundedly regular", then the sequence $({x_n})$, defined by \[ {x_0} \in X\;{\text {arbitrary,}}\quad {x_{n + 1}}: = {P_{r(n)}}{x_n},\quad {\text {for all}}\;n \geqslant 0,\] converges in norm to some point in $\cap _{i = 1}^N{C_i}$. Examples without the usual assumptions on compactness are given. Methods of this type have been used in areas like computerized tomography and signal processing.## References

- Shmuel Agmon,
*The relaxation method for linear inequalities*, Canad. J. Math.**6**(1954), 382–392. MR**62786**, DOI 10.4153/cjm-1954-037-2 - Ron Aharoni and Yair Censor,
*Block-iterative projection methods for parallel computation of solutions to convex feasibility problems*, Proceedings of the Fourth Haifa Matrix Theory Conference (Haifa, 1988), 1989, pp. 165–175. MR**1010054**, DOI 10.1016/0024-3795(89)90375-3 - I. Amemiya and T. Andô,
*Convergence of random products of contractions in Hilbert space*, Acta Sci. Math. (Szeged)**26**(1965), 239–244. MR**187116** - Jean-Bernard Baillon and Ronald E. Bruck,
*Ergodic theorems and the asymptotic behavior of contraction semigroups*, Fixed point theory and applications (Halifax, NS, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 12–26. MR**1190029** - J. B. Baillon, R. E. Bruck, and S. Reich,
*On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces*, Houston J. Math.**4**(1978), no. 1, 1–9. MR**473932**
H. H. Bauschke and J. M. Borwein, - Ronald E. Bruck,
*Random products of contractions in metric and Banach spaces*, J. Math. Anal. Appl.**88**(1982), no. 2, 319–332. MR**667060**, DOI 10.1016/0022-247X(82)90195-0 - Yair Censor,
*Parallel application of block-iterative methods in medical imaging and radiation therapy*, Math. Programming**42**(1988), no. 2, (Ser. B), 307–325. MR**976123**, DOI 10.1007/BF01589408
Y. Censor and G. T. Herman,

*On projection algorithms for solving convex feasibility problems*, Technical rep., Simon Fraser Univ., 1993.

*On some optimization techniques in image reconstruction from projections*, Appl. Numer. Math.

**3**(1987), 365-391. F. Deutsch,

*The method of alternating orthogonal projections*, Approximation Theory, Spline Features and Applications (S. P. Singh, ed.), Proc. Conf., Hotel Villa del Mare, Maratea, Italy, April 28, 1991, May 9, 1991, Kluwer Academic, Amsterdam, 1992, pp. 105-121. J. M. Dye,

*Convergence of random products of compact contractions in Hilbert space*, Integral Equations and Operator Theory

**12**(1989), 12-22. J. M. Dye, T. Kuczumow, P.-K. Lin, and S. Reich,

*Random products of nonexpansive mappings in spaces with the Opial property*, (B.-L. Lin and W. B. Johnson, eds.), Banach Spaces, Contemporary Math., vol. 144, Amer. Math. Soc., Providence, RI, 1993, pp. 87-93. J. M. Dye and S. Reich,

*Random products of nonexpansive mappings*, Optimization and Nonlinear Analysis (A. Ioffe, M. Marcus, and S. Reich, eds.), Proc. Binational Workshop on Optimization and Nonlinear Analysis, Technion City, Haifa, 21-27, March 1990, Pitman Res. Notes in Math. Ser., vol. 244, Longman Sci. Tech, Harlow, England, 1992, pp. 106-118. —,

*Unrestricted iterations of nonexpansive mappings in Hilbert space*, Nonlinear Anal.

**18**(1992), 199-207. L. Elsner, I. Koltracht, and M. Neumann,

*Convergence of sequential and asynchronous nonlinear paracontractions*, Numer. Math.

**62**(1992), 305-319. S. D. Flåm and J. Zowe,

*Relaxed outer projections, weighted averages and convex feasibility*, BIT

**30**(1990), 289-300. A. Genel and J. Lindenstrauss,

*An example concerning fixed points*, Israel J. Math.

**22**(1975), 81-86. K. Goebel and W. A. Kirk,

*Topics in metric fixed point theory*, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, Cambridge, 1990. K. Goebel and S. Reich,

*Uniform convexity, hyperbolic geometry and nonexpansive mappings*, Monographs and Textbooks in Pure and Appl. Math., vol. 83, Marcel Dekker, New York, 1984. L. G. Gubin, B. T. Polyak, and E. V. Raik,

*The method of projections for finding the common point of convex sets*, USSR Comput. Math. Math. Phys.

**7**(1967), 1-24. I. Halperin,

*The product of projection operators*, Acta Sci. Math. (Szeged)

**23**(1962), 96-99. S. Kaczmarz,

*Angenäherte Auflösung von Systemen linearer Gleichungen*, Bull. Internat. Acad Polon. Sci. Lettres. Cl. Sci. Math. Natur. Sér. A: Sci. Math., Imprimerie de l’Université, Cracovie, 1937, pp. 355-357. T. S. Motzkin and I. J. Schoenberg,

*The relaxation method for linear inequalities*, Canad. J. Math.

**6**(1954), 393-404. W. V. Petryshyn and T. E. Williamson, Jr.,

*A necessary and sufficient condition for the convergence of a sequence of iterates for quasi-nonexpansive mappings*, Bull. Amer. Math. Soc.

**78**(1972), 1027-1031. —,

*Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings*, J. Math. Anal. Appl.

**43**(1973), 459-497. M. I. Sezan,

*An overview of convex projections theory and its applications to image recovery problems*, Ultramicroscopy

**40**(1992), 55-67. P. Tseng,

*On the convergence of the products of firmly nonexpansive mappings*, SIAM J. Optim.

**2**(1992), 425-434. J. von Neumann,

*Functional operators*, vol. II.

*The geometry of orthogonal spaces*, Ann. of Math. Stud., no. 22, Princeton Univ. Press, Princeton, NJ, 1950. Reprint of mimeographed lecture notes first distributed in 1933. D. C. Youla,

*On deterministic convergence of iterations of relaxed projection operators*, J. Visual Communication and Image Representation

**1**(1990), 12-20. D. C. Youla and H. Webb,

*Image reconstruction by the method of convex projections: Part*$1$.

*Theory*, IEEE Trans. Medical Imaging

**MI-1**(1982), 81-94.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 1365-1373 - MSC: Primary 47H09; Secondary 46C99, 47N99, 92C55, 94A12
- DOI: https://doi.org/10.1090/S0002-9947-1995-1257097-1
- MathSciNet review: 1257097