Hausdorff measure and level sets of typical continuous mappings in Euclidean spaces
HTML articles powered by AMS MathViewer
- by Bernd Kirchheim
- Trans. Amer. Math. Soc. 347 (1995), 1763-1777
- DOI: https://doi.org/10.1090/S0002-9947-1995-1260171-7
- PDF | Request permission
Abstract:
We determine the Hausdorff dimension of level sets and of sets of points of multiplicity for mappings in a residual subset of the space of all continuous mappings from ${\mathbb {R}^n}$ to ${\mathbb {R}^m}$.References
- Andrew M. Bruckner, Differentiation of real functions, Lecture Notes in Mathematics, vol. 659, Springer, Berlin, 1978. MR 507448, DOI 10.1007/BFb0069821
- A. M. Bruckner and K. M. Garg, The level structure of a residual set of continuous functions, Trans. Amer. Math. Soc. 232 (1977), 307–321. MR 476939, DOI 10.1090/S0002-9947-1977-0476939-X
- A. M. Bruckner and G. Petruska, Some typical results on bounded Baire $1$ functions, Acta Math. Hungar. 43 (1984), no. 3-4, 325–333. MR 733864, DOI 10.1007/BF01958029
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1 M. Chlebík, On extrema of typical functions (to appear).
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- B. Kirchheim, Some further typical results on bounded Baire one functions, Acta Math. Hungar. 62 (1993), no. 1-2, 119–129. MR 1236999, DOI 10.1007/BF01874223
- Bernd Kirchheim, Typical approximately continuous functions are surprisingly thick, Real Anal. Exchange 18 (1992/93), no. 1, 52–62. MR 1205498, DOI 10.2307/44133044
- John C. Oxtoby, The Banach-Mazur game and Banach category theorem, Contributions to the theory of games, vol. 3, Annals of Mathematics Studies, no. 39, Princeton University Press, Princeton, N.J., 1957, pp. 159–163. MR 0093741
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- I. M. Singer and John A. Thorpe, Lecture notes on elementary topology and geometry, Scott, Foresman & Co., Glenview, Ill., 1967. MR 0213982
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1763-1777
- MSC: Primary 26B99; Secondary 28A78, 46E15
- DOI: https://doi.org/10.1090/S0002-9947-1995-1260171-7
- MathSciNet review: 1260171