On the oscillation of differential equations with an oscillatory coefficient
HTML articles powered by AMS MathViewer
- by B. J. Harris and Q. Kong
- Trans. Amer. Math. Soc. 347 (1995), 1831-1839
- DOI: https://doi.org/10.1090/S0002-9947-1995-1283552-4
- PDF | Request permission
Abstract:
We derive lower bounds for the distance between consecutive zeros of solutions of \[ ( * )\quad y" + q(t)y = 0\] when $q$ takes both positive and negative values. We apply our results to the limit point/limit circle classifications of $( * )$.References
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785, DOI 10.1007/BFb0058618
- B. J. Harris, On an inequality of Lyapunov for disfocality, J. Math. Anal. Appl. 146 (1990), no. 2, 495–500. MR 1043117, DOI 10.1016/0022-247X(90)90319-B
- Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
- Man Kam Kwong, On Lyapunov’s inequality for disfocality, J. Math. Anal. Appl. 83 (1981), no. 2, 486–494. MR 641347, DOI 10.1016/0022-247X(81)90137-2
- Man Kam Kwong, On certain Riccati integral equations and second-order linear oscillation, J. Math. Anal. Appl. 85 (1982), no. 2, 315–330. MR 649178, DOI 10.1016/0022-247X(82)90004-X
- W. T. Patula and J. S. W. Wong, An $L^{p}$-analogue of the Weyl alternative, Math. Ann. 197 (1972), 9–28. MR 299865, DOI 10.1007/BF01427949
- Ju Rang Yan, On the distance between zeroes and the limit-point problem, Proc. Amer. Math. Soc. 107 (1989), no. 4, 971–975. MR 984825, DOI 10.1090/S0002-9939-1989-0984825-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 1831-1839
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1995-1283552-4
- MathSciNet review: 1283552