Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Algebraic field theory on curved manifolds

Author: Martin Olesen
Journal: Trans. Amer. Math. Soc. 347 (1995), 2147-2160
MSC: Primary 81T05; Secondary 46L60, 47D45, 81T20
MathSciNet review: 1189546
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we set up an algebraic framework for the study of quantum field theory in a class of manifolds, which includes Minkowski space and the Kruskal spacetime. The formalism provides a unifying framework for studying problems of Bisognano-Wichmann type, e.g., Hawking radiation in black hole geometries. Analogously to flat spacetime, we establish a correspondence between isometries of certain wedge domains of spacetime and the modular structure of the local algebras. Under an ergodic hypothesis, the wedge algebras are shown to be type III factors as expected, and we derive a result concerning factorization of the equilibrium state. This result generalizes a similar one obtained by Sewell in [Ann. Phys. 141 (1982), 201-224]. Finally an example of a quantum field theory satisfying the basic axioms is constructed. The local algebras are field algebras of bosonic free field solutions to the Klein-Gordon equation twisted through a PCT-like conjugation, and we show that this model realizes the abstract properties developed on the axiomatic basis.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 81T05, 46L60, 47D45, 81T20

Retrieve articles in all journals with MSC: 81T05, 46L60, 47D45, 81T20

Additional Information

Keywords: Quantum field theory, space-time manifolds, von Neumann algebras, modular theory
Article copyright: © Copyright 1995 American Mathematical Society