An access theorem for analytic functions
HTML articles powered by AMS MathViewer
- by Marvin Ortel
- Trans. Amer. Math. Soc. 347 (1995), 2213-2223
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273513-3
- PDF | Request permission
Abstract:
Suppose that $\mathcal {M}$ is an analytic manifold, ${m_0} \in \mathcal {M},f:\mathcal {M} \to \mathbb {R}$, and $f$ is analytic. Then at least one of the following three statements is true: (1) ${m_0}$ is a local maximum of $f$. (2) There is a continuous path $\sigma :[0,1] \to \mathcal {M}$ such that $\sigma (0) = {m_0}$, $f \circ \sigma$ is strictly increasing on $[0,1]$, and $\sigma (1)$ is a local maximum of $f$. (3) There is a continuous path $\sigma :[0,1) \to \mathcal {M}$ with these properties: $\sigma (0) = {m_0};f \circ \sigma$ is strictly increasing on $[0,1)$; whenever $K$ is a compact subset of $\mathcal {M}$, there is a corresponding number $d(K) \in [0,1)$ such that $\sigma (t) \notin K$ for all $t \in [d(K),1)$.References
- François Bruhat and Henri Cartan, Sur la structure des sous-ensembles analytiques réels, C. R. Acad. Sci. Paris 244 (1957), 988–990 (French). MR 86108
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- R. Hornblower and E. S. Thomas Jr., The access theorem for subharmonic functions, Trans. Amer. Math. Soc. 172 (1972), 287–297. MR 308420, DOI 10.1090/S0002-9947-1972-0308420-8
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257 S. Lojasiewicz, Ensembles semianalytiques, Notes, Inst. Hautes Études, Bures-sur-Yvette, France, 1965.
- Charles B. Morrey Jr., The analytic embedding of abstract real-analytic manifolds, Ann. of Math. (2) 68 (1958), 159–201. MR 99060, DOI 10.2307/1970048
- Marvin Ortel, A counterexample to access theorems for $C^\infty$ functions, Proc. Amer. Math. Soc. 123 (1995), no. 3, 819–825. MR 1239802, DOI 10.1090/S0002-9939-1995-1239802-9
- Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
- H. J. Sussmann, Real analytic desingularization and subanalytic sets: an elementary approach, Trans. Amer. Math. Soc. 317 (1990), no. 2, 417–461. MR 943608, DOI 10.1090/S0002-9947-1990-0943608-5
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2213-2223
- MSC: Primary 32C05; Secondary 31B05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1273513-3
- MathSciNet review: 1273513