Smooth sets for a Borel equivalence relation
HTML articles powered by AMS MathViewer
- by Carlos E. Uzcátegui A.
- Trans. Amer. Math. Soc. 347 (1995), 2025-2039
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303127-8
- PDF | Request permission
Abstract:
We study some properties of smooth Borel sets with respect to a Borel equivalence relation, showing some analogies with the collection of countable sets from a descriptive set theoretic point of view. We found what can be seen as an analog of the hyperarithmetic points in the context of smooth sets. We generalize a theorem of Weiss from ${\mathbf {Z}}$-actions to actions by arbitrary countable groups. We show that the $\sigma$-ideal of closed smooth sets is $\Pi _1^1$ non-Borel.References
- Howard Becker, The restriction of a Borel equivalence relation to a sparse set, Arch. Math. Logic 42 (2003), no. 4, 335–347. MR 2018085, DOI 10.1007/s001530200142
- John P. Burgess, A selection theorem for group actions, Pacific J. Math. 80 (1979), no. 2, 333–336. MR 539418, DOI 10.2140/pjm.1979.80.333
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI 10.1090/S0002-9947-1994-1149121-0
- Edward G. Effros, Polish transformation groups and classification problems, General topology and modern analysis (Proc. Conf., Univ. California, Riverside, Calif., 1980) Academic Press, New York-London, 1981, pp. 217–227. MR 619045
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), no. 4, 903–928. MR 1057041, DOI 10.1090/S0894-0347-1990-1057041-5
- Alexander S. Kechris, The theory of countable analytical sets, Trans. Amer. Math. Soc. 202 (1975), 259–297. MR 419235, DOI 10.1090/S0002-9947-1975-0419235-7 —, The descriptive set theory of $\sigma$-ideals of compact sets, Logic Colloquium’88, (R. Ferro, C. Bonotto, S. Valentini and A. Zanardo, eds.), North-Holland, 1989, pp. 117-138.
- Alexander S. Kechris, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, Israel J. Math. 73 (1991), no. 2, 189–198. MR 1135211, DOI 10.1007/BF02772948
- Alexander S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1972/73), 337–384. MR 369072, DOI 10.1016/0003-4843(73)90012-0
- Alexander S. Kechris, Amenable versus hyperfinite Borel equivalence relations, J. Symbolic Logic 58 (1993), no. 3, 894–907. MR 1242044, DOI 10.2307/2275102
- Alexander S. Kechris and Alain Louveau, Descriptive set theory and the structure of sets of uniqueness, London Mathematical Society Lecture Note Series, vol. 128, Cambridge University Press, Cambridge, 1987. MR 953784, DOI 10.1017/CBO9780511758850 A.S. Kechris, Lectures on Borel equivalence relation, unpublished.
- A. S. Kechris, A. Louveau, and W. H. Woodin, The structure of $\sigma$-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), no. 1, 263–288. MR 879573, DOI 10.1090/S0002-9947-1987-0879573-9
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Benjamin Weiss, Measurable dynamics, Conference in modern analysis and probability (New Haven, Conn., 1982) Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 395–421. MR 737417, DOI 10.1090/conm/026/737417 C. Uzcátegui, Ph.D. Thesis, Caltech, 1990. —, The covering property for $\sigma$-ideals of compact sets, Fund. Math. 140 (1992), 119-146.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2025-2039
- MSC: Primary 03E15; Secondary 04A15, 28A05, 28D99, 54H05, 54H20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303127-8
- MathSciNet review: 1303127