## Geometry of strictly convex domains and an application to the uniform estimate of the $\overline \partial$-problem

HTML articles powered by AMS MathViewer

- by Ten Ging Chen
- Trans. Amer. Math. Soc.
**347**(1995), 2127-2137 - DOI: https://doi.org/10.1090/S0002-9947-1995-1308003-2
- PDF | Request permission

## Abstract:

In this paper, we construct a nice defining function $\rho$ for a bounded smooth strictly convex domain $\Omega$ in ${R^n}$ with explicit gradient and Hessian estimates near the boundary $\partial \Omega$ of $\Omega$. From the approach, we deduce that any two normals through $\partial \Omega$ do not intersect in any tubular neighborhood of $\partial \Omega$ with radius which is less than $\frac {1} {K}$, where $K$ is the maximum principal curvature of $\partial \Omega$. Finally, we apply such $\rho$ to obtain an explicit upper bound of the constant ${C_\Omega }$ in the Henkin’s estimate ${\left \| {{H_\Omega }f} \right \|_{{L^\infty }(\Omega )}} \leqslant {C_\Omega }{\left \| f \right \|_{{L^\infty }(\Omega )}}$ of the $\partial$-problem on strictly convex domains $\Omega$ in ${{\mathbf {C}}^n}$.## References

- Richard L. Bishop and Richard J. Crittenden,
*Geometry of manifolds*, Pure and Applied Mathematics, Vol. XV, Academic Press, New York-London, 1964. MR**0169148**
T. G. Chen, - Hans Grauert and Ingo Lieb,
*Das Ramirezsche Integral und die Lösung der Gleichung $\bar \partial f=\alpha$ im Bereich der beschränkten Formen*, Rice Univ. Stud.**56**(1970), no. 2, 29–50 (1971) (German). MR**273057** - G. M. Henkin,
*Integral representation of functions in strongly pseudoconvex regions, and applications to the $\overline \partial$-problem*, Mat. Sb. (N.S.)**82 (124)**(1970), 300–308 (Russian). MR**0265625**
L. Hörmander, ${L^2}$ - Norberto Kerzman,
*Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains*, Comm. Pure Appl. Math.**24**(1971), 301–379. MR**281944**, DOI 10.1002/cpa.3160240303 - Steven G. Krantz,
*Function theory of several complex variables*, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR**1162310** - Jeffrey Rauch,
*An inclusion theorem for ovaloids with comparable second fundamental forms*, J. Differential Geometry**9**(1974), 501–505. MR**353225** - Richard Sacksteder,
*On hypersurfaces with no negative sectional curvatures*, Amer. J. Math.**82**(1960), 609–630. MR**116292**, DOI 10.2307/2372973 - Nessim Sibony,
*Un exemple de domaine pseudoconvexe régulier où l’équation $\bar \partial u=f$ n’admet pas de solution bornée pour $f$ bornée*, Invent. Math.**62**(1980/81), no. 2, 235–242 (French). MR**595587**, DOI 10.1007/BF01389159 - F. W. Warner,
*Extensions of the Rauch comparison theorem to submanifolds*, Trans. Amer. Math. Soc.**122**(1966), 341–356. MR**200873**, DOI 10.1090/S0002-9947-1966-0200873-6

*On Henkin’s solution of the*$\partial$

*-problem on strictly convex domains in*${{\mathbf {C}}^n}$, Ph.D. Thesis, Univ. of California at Berkeley, 1985. S. Gilbarg and N. Trudinger,

*Elliptic partial equations of second order*, Springer, Berlin, 1977.

*estimates and existence theorems for the*$\partial$

*operator*, Acta Math.

**113**(1965), 82-152. —,

*Introduction to complex analysis in several variables*, North-Holland, Amsterdam, 1973.

## Bibliographic Information

- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**347**(1995), 2127-2137 - MSC: Primary 32F20
- DOI: https://doi.org/10.1090/S0002-9947-1995-1308003-2
- MathSciNet review: 1308003