An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics
HTML articles powered by AMS MathViewer
- by Alexander Premet
- Trans. Amer. Math. Soc. 347 (1995), 2961-2988
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290730-7
- PDF | Request permission
Abstract:
Let $\mathfrak {g}$ be the Lie algebra of a connected reductive group $G$ over an algebraically closed field of characteristic $p > 0$. Suppose that ${G^{(1)}}$ is simply connected and $p$ is good for the root system of $G$. Given a one-dimensional torus $\lambda \subset G$ let $\mathfrak {g}(\lambda ,1)$ denote the weight component of ${\text {Ad(}}\lambda {\text {)}}$ corresponding to weight $i \in X(\lambda ) \cong \mathbb {Z}$. It is proved in the paper that, for any nonzero nilpotent element $e \in \mathfrak {g}$, there is a one-dimentional torus ${\lambda _e} \subset G$ such that $e \in \mathfrak {g}({\lambda _e},2)$ and ${\text {Ker}}{\text {ad}}e \subseteq { \oplus _{i \geqslant 0}}\mathfrak {g}({\lambda _e},i)$.References
- P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 401–425. MR 417306, DOI 10.1017/S0305004100052403
- P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. I, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 3, 401–425. MR 417306, DOI 10.1017/S0305004100052403
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307
- Charles W. Curtis, Noncommutative extensions of Hilbert rings, Proc. Amer. Math. Soc. 4 (1953), 945–955. MR 59254, DOI 10.1090/S0002-9939-1953-0059254-7
- Sergei Gelfand and David Kazhdan, Examples of tensor categories, Invent. Math. 109 (1992), no. 3, 595–617. MR 1176207, DOI 10.1007/BF01232042
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI 10.1016/0021-8693(80)90141-6
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, DOI 10.2307/1971168
- Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741, DOI 10.2307/j.ctv10vm2m8
- Linda Ness, A stratification of the null cone via the moment map, Amer. J. Math. 106 (1984), no. 6, 1281–1329. With an appendix by David Mumford. MR 765581, DOI 10.2307/2374395
- Klaus Pommerening, Über die unipotenten Klassen reduktiver Gruppen, J. Algebra 49 (1977), no. 2, 525–536 (German). MR 480767, DOI 10.1016/0021-8693(77)90256-3
- Klaus Pommerening, Über die unipotenten Klassen reduktiver Gruppen. II, J. Algebra 65 (1980), no. 2, 373–398 (German). MR 585729, DOI 10.1016/0021-8693(80)90226-4
- Alexander Premet, Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture, Invent. Math. 121 (1995), no. 1, 79–117. MR 1345285, DOI 10.1007/BF01884291
- Guy Rousseau, Immeubles sphériques et théorie des invariants, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A247–A250 (French, with English summary). MR 506257
- Peter Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Mathematics, vol. 815, Springer, Berlin, 1980. MR 584445, DOI 10.1007/BFb0090294
- Peter Slodowy, Die Theorie der optimalen Einparameteruntergruppen für instabile Vektoren, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13, Birkhäuser, Basel, 1989, pp. 115–131 (German). MR 1044588
- N. Spaltenstein, On unipotent and nilpotent elements of groups of type $E_{6}$, J. London Math. Soc. (2) 27 (1983), no. 3, 413–420. MR 697134, DOI 10.1112/jlms/s2-27.3.413
- T. A. Springer, The Steinberg function of a finite Lie algebra, Invent. Math. 58 (1980), no. 3, 211–215. MR 571573, DOI 10.1007/BF01390252
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- B. Ju. Veĭsfeĭler and V. G. Kac, The irreducible representations of Lie $p$-algebras, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 28–36 (Russian). MR 0285575
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 2961-2988
- MSC: Primary 17B10; Secondary 17B50, 20G05
- DOI: https://doi.org/10.1090/S0002-9947-1995-1290730-7
- MathSciNet review: 1290730