Banach spaces with the $2$-summing property
Authors:
A. Arias, T. Figiel, W. B. Johnson and G. Schechtman
Journal:
Trans. Amer. Math. Soc. 347 (1995), 3835-3857
MSC:
Primary 46B20
DOI:
https://doi.org/10.1090/S0002-9947-1995-1303114-X
MathSciNet review:
1303114
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A Banach space $X$ has the $2$-summing property if the norm of every linear operator from $X$ to a Hilbert space is equal to the $2$-summing norm of the operator. Up to a point, the theory of spaces which have this property is independent of the scalar field: the property is self-dual and any space with the property is a finite dimensional space of maximal distance to the Hilbert space of the same dimension. In the case of real scalars only the real line and real $\ell _\infty ^2$ have the $2$-summing property. In the complex case there are more examples; e.g., all subspaces of complex $\ell _\infty ^3$ and their duals.
- David P. Blecher, Tensor products of operator spaces. II, Canad. J. Math. 44 (1992), no. 1, 75–90. MR 1152667, DOI https://doi.org/10.4153/CJM-1992-004-5
- Bhaskar Bagchi and Gadadhar Misra, Contractive homomorphisms and tensor product norms, Integral Equations Operator Theory 21 (1995), no. 3, 255–269. MR 1316543, DOI https://doi.org/10.1007/BF01299964
- J. Bourgain and L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Israel J. Math. 57 (1987), no. 2, 137–224. MR 890420, DOI https://doi.org/10.1007/BF02772174
- Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160. MR 0139079
- T. Figiel and W. B. Johnson, Large subspaces of $l^{n}_{\infty }$ and estimates of the Gordon-Lewis constant, Israel J. Math. 37 (1980), no. 1-2, 92–112. MR 599305, DOI https://doi.org/10.1007/BF02762871
- Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204. MR 0030135
- S. V. Kisljakov, Spaces with a “small” annihilator, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 65 (1976), 192–195, 209 (Russian, with English summary). Investigations on linear operators and the theory of functions, VII. MR 0500098
- Ryszard Komorowski, Isometric characterizations of $l^n_p$ spaces, Canad. J. Math. 46 (1994), no. 3, 574–585. MR 1276112, DOI https://doi.org/10.4153/CJM-1994-030-x
- D. R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika 26 (1979), no. 1, 18–29. MR 557122, DOI https://doi.org/10.1112/S0025579300009566
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
- V. D. Mil′man and H. Wolfson, Minkowski spaces with extremal distance from the Euclidean space, Israel J. Math. 29 (1978), no. 2-3, 113–131. MR 467255, DOI https://doi.org/10.1007/BF02762002
- Vern I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space geometry, J. Funct. Anal. 109 (1992), no. 1, 113–129. MR 1183607, DOI https://doi.org/10.1016/0022-1236%2892%2990014-A
- Gilles Pisier, Une nouvelle classe d’espaces de Banach vérifiant le théorème de Grothendieck, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 1, x, 69–90 (French, with English summary). MR 487403
- Nicole Tomczak-Jaegermann, Computing $2$-summing norm with few vectors, Ark. Mat. 17 (1979), no. 2, 273–277. MR 608320, DOI https://doi.org/10.1007/BF02385473
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46B20
Retrieve articles in all journals with MSC: 46B20
Additional Information
Article copyright:
© Copyright 1995
American Mathematical Society