The alternative torus and the structure of elliptic quasi-simple Lie algebras of type $A_ 2$
HTML articles powered by AMS MathViewer
- by Stephen Berman, Yun Gao, Yaroslav Krylyuk and Erhard Neher
- Trans. Amer. Math. Soc. 347 (1995), 4315-4363
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303115-1
- PDF | Request permission
Abstract:
We present the complete classification of the tame irreducible elliptic quasi-simple Lie algebras of type ${A_2}$, and in particular, specialize on the case where the coordinates are not associative. Here the coordinates are Cayley-Dickson algebras over Laurent polynomial rings in $\nu \geqslant 3$ variables, which we call alternative tori. In giving our classification we need to present much information on these alternative tori and the Lie algebras coordinatized by them.References
- B. N. Allison and J. R. Faulkner, Nonassociative coefficient algebras for Steinberg unitary Lie algebras, J. Algebra 161 (1993), no. 1, 1–19. MR 1245840, DOI 10.1006/jabr.1993.1202
- Stephen Berman, Yun Gao, and Yaroslav S. Krylyuk, Quantum tori and the structure of elliptic quasi-simple Lie algebras, J. Funct. Anal. 135 (1996), no. 2, 339–389. MR 1370607, DOI 10.1006/jfan.1996.0013
- Stephen Berman and Yaroslav Krylyuk, Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings, J. Algebra 173 (1995), no. 2, 302–347. MR 1325778, DOI 10.1006/jabr.1995.1090
- S. Berman and R. V. Moody, Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. 108 (1992), no. 2, 323–347. MR 1161095, DOI 10.1007/BF02100608
- G. M. Benkart and R. V. Moody, Derivations, central extensions, and affine Lie algebras, Algebras Groups Geom. 3 (1986), no. 4, 456–492. MR 901810 G. M. Benkart and E.I. Zelmanov, Lie algebras graded by finite root systems and intersection matrix algebras, Preprint.
- Hel Braun and Max Koecher, Jordan-Algebren, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 128, Springer-Verlag, Berlin-New York, 1966 (German). MR 0204470, DOI 10.1007/978-3-642-94947-0
- John R. Faulkner, Barbilian planes, Geom. Dedicata 30 (1989), no. 2, 125–181. MR 1000255, DOI 10.1007/BF00181549 Y. Gao, Skew-dihedral homology and involutive Lie algebras graded by finite root systems, Ph.D. Thesis, University of Saskatchewan, 1994.
- Raphael Høegh-Krohn and Bruno Torrésani, Classification and construction of quasisimple Lie algebras, J. Funct. Anal. 89 (1990), no. 1, 106–136. MR 1040958, DOI 10.1016/0022-1236(90)90006-7
- C. Kassel and J.-L. Loday, Extensions centrales d’algèbres de Lie, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 4, 119–142 (1983) (French, with English summary). MR 694130, DOI 10.5802/aif.896
- Yuri I. Manin, Topics in noncommutative geometry, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991. MR 1095783, DOI 10.1515/9781400862511
- Kevin McCrimmon, Derivations and Cayley derivations of generalized Cayley-Dickson algebras, Pacific J. Math. 117 (1985), no. 1, 163–182. MR 777443, DOI 10.2140/pjm.1985.117.163 E. Neher, Lie algebras graded by $3$-graded root systems and Jordan pairs covered by a grid, Preprint.
- Richard D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR 0210757
- George B. Seligman, Rational methods in Lie algebras, Lecture Notes in Pure and Applied Mathematics, Vol. 17, Marcel Dekker, Inc., New York-Basel, 1976. MR 0427394
- K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov, and A. I. Shirshov, Rings that are nearly associative, Pure and Applied Mathematics, vol. 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Translated from the Russian by Harry F. Smith. MR 668355 M. Wambst, Homologie de Hochschild et homologie cyclique du tore quantique multipara métré, Preprint.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 347 (1995), 4315-4363
- MSC: Primary 17B37; Secondary 17B67
- DOI: https://doi.org/10.1090/S0002-9947-1995-1303115-1
- MathSciNet review: 1303115