Radial Solutions to a Dirichlet Problem Involving Critical Exponents when

Authors:
Alfonso Castro and Alexandra Kurepa

Journal:
Trans. Amer. Math. Soc. **348** (1996), 781-798

MSC (1991):
Primary 35J65, 34A10

DOI:
https://doi.org/10.1090/S0002-9947-96-01476-6

MathSciNet review:
1321571

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that, for each , the set of radially symmetric solutions to the boundary value problem

is bounded. Moreover, we establish geometric properties of the branches of solutions bifurcating from zero and from infinity.

**1**F. Atkinson, H. Brezis, L. Peletier,*Solutions dequations elliptiques avec exposant de Sobolev critique qui changent de signe,*C. R. Acad. Sci. Paris, t. 306, Serie I (1988), 711-714. MR**89k:35088****2**H. Brezis, L. Nirenberg,*Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,*Comm. Pure Appl. Math. 36(1983), 437-477. MR**84h:35059****3**A. Castro, A. Kurepa,*Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball,*Proc. Amer. Math. Soc. 101(1987), 56-64. MR**88j:35058****4**_____ ,*Radially symmetric solutions to a superlinear Dirichlet problem in a ball with jumping nonlinearities,*Trans. Amer. Math. Soc. 315(1989), 353-372. MR**90g:35053****5**_____ ,*Radially symmetric solutions to a Dirichlet problem involving critical exponents*, Trans. Amer. Math. Soc. 343(1994), 907-926. MR**94h:35012****6**G. Cerami,*Elliptic equations with critical growth,*College on Variational Problems in Analysis, Lecture Notes SMR 281/24, International Centre for Theoretical Physics, Trieste, Italy, (1988).**7**G. Cerami, S. Solimini, M. Struwe,*Some existence results for superlinear elliptic boundary value problems involving critical exponents,*J. Functional Anal. 69(1986), 289-306. MR**88b:35074****8**M. G. Crandall, P. M. Rabinowitz,*Bifurcation from simple eigenvalues*, J. Functional Analysis 8(1971), 321-340. MR**44:5836****9**M. K. Kwong,*Uniqueness of positive solutions for in*, Arch. of Rational Mech.**105**(1989), 243--266. MR**90d:35015****10**S. I. Pohozaev,*Eigenfunctions of the equation*, Soviet. Math. Dokl. 6(1965), 1408-1411. MR**33:411****11**P. Pucci, J. Serrin,*A general variational identity,*Indiana Univ. Math. J. 35(1986), 681-703. MR**88b:35072****12**S. Solimini,*On the existence of infinitely many radial solutions for some elliptic problems,*Revista Mat. Aplicadas 9 (1987), 75-86. MR**89f:35086****13**N. Trudinger,*Remarks concerning the conformal deformation of Riemannian structures on compact manifolds,*Ann. Sc. Norm. Sup. Pisa 22(1968), 265-274. MR**39:2093**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
35J65,
34A10

Retrieve articles in all journals with MSC (1991): 35J65, 34A10

Additional Information

**Alfonso Castro**

Affiliation:
Department of Mathematics, University of North Texas, Denton, Texas 76203-5116

Email:
acastro@unt.edu

**Alexandra Kurepa**

Affiliation:
Department of Mathematics, North Carolina A&T State University, Greensboro, North Carolina 27411

Email:
kurepaa@athena.ncat.edu

DOI:
https://doi.org/10.1090/S0002-9947-96-01476-6

Keywords:
Critical exponent,
radially symmetric solutions,
Dirichlet problem,
nodal curves,
bifurcation

Received by editor(s):
July 13, 1994

Received by editor(s) in revised form:
February 7, 1995

Article copyright:
© Copyright 1996
American Mathematical Society