Geometric Isomorphisms between Infinite Dimensional Teichmüller Spaces
Authors:
Clifford J. Earle and Frederick P. Gardiner
Journal:
Trans. Amer. Math. Soc. 348 (1996), 1163-1190
MSC (1991):
Primary 32G15; Secondary 30C62, 30C75
DOI:
https://doi.org/10.1090/S0002-9947-96-01490-0
MathSciNet review:
1322950
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $X$ and $Y$ be the interiors of bordered Riemann surfaces with finitely generated fundamental groups and nonempty borders. We prove that every holomorphic isomorphism of the Teichmüller space of $X$ onto the Teichmüller space of $Y$ is induced by a quasiconformal homeomorphism of $X$ onto $Y$. These Teichmüller spaces are not finite dimensional and their groups of holomorphic automorphisms do not act properly discontinuously, so the proof presents difficulties not present in the classical case. To overcome them we study weak continuity properties of isometries of the tangent spaces to Teichmüller space and special properties of Teichmüller disks.
- Richard Arens, The closed maximal ideals of algebras of functions holomorphic on a Riemann surface, Rend. Circ. Mat. Palermo (2) 7 (1958), 245–260. MR 105501, DOI https://doi.org/10.1007/BF02849323
- Lipman Bers, Automorphic forms and Poincaré series for infinitely generated Fuchsian groups, Amer. J. Math. 87 (1965), 196–214. MR 174737, DOI https://doi.org/10.2307/2373231
- Seán Dineen, The Schwarz lemma, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1989. Oxford Science Publications. MR 1033739
- Clifford J. Earle, On holomorphic cross-sections in Teichmüller spaces, Duke Math. J. 36 (1969), 409–415. MR 254233
- Clifford J. Earle, The integrable automorphic forms as a dual space, Modular functions in analysis and number theory, Lecture Notes Math. Statist., vol. 5, Univ. Pittsburgh, Pittsburgh, PA, 1983, pp. 30–40. MR 732960
- Clifford J. Earle, The integrable automorphic forms as a dual space. II, Complex Variables Theory Appl. 12 (1989), no. 1-4, 153–158. MR 1040916, DOI https://doi.org/10.1080/17476938908814361
- Clifford J. Earle and Irwin Kra, On holomorphic mappings between Teichmüller spaces, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 107–124. MR 0430319
- Clifford J. Earle and Irwin Kra, On isometries between Teichmüller spaces, Duke Math. J. 41 (1974), 583–591. MR 348098
- C. J. Earle, I. Kra, and S. L. Krushkal′, Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), no. 2, 927–948. MR 1214783, DOI https://doi.org/10.1090/S0002-9947-1994-1214783-6
- C. J. Earle and A. Marden, Projections to automorphic functions, Proc. Amer. Math. Soc. 19 (1968), 274–278. MR 224813, DOI https://doi.org/10.1090/S0002-9939-1968-0224813-6
- H. M. Farkas and I. Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR 1139765
- O. Forster, Lectures on Riemann Surfaces, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- Frederick P. Gardiner, Approximation of infinite-dimensional Teichmüller spaces, Trans. Amer. Math. Soc. 282 (1984), no. 1, 367–383. MR 728718, DOI https://doi.org/10.1090/S0002-9947-1984-0728718-7
- Frederick P. Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. A Wiley-Interscience Publication. MR 903027
- A. Harrington and M. Ortel, The dilatation of an extremal quasi-conformal mapping, Duke Math. J. 43 (1976), no. 3, 533–544. MR 425117
- Lawrence A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in holomorphy (Proc. Sem. Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977) North-Holland Math. Stud., vol. 34, North-Holland, Amsterdam-New York, 1979, pp. 345–406. MR 520667
- Marvin I. Knopp, A corona theorem for automorphic forms and related results, Amer. J. Math. 91 (1969), 599–618. MR 251219, DOI https://doi.org/10.2307/2373341
- Clinton J. Kolaski, Isometries of Bergman spaces over bounded Runge domains, Canadian J. Math. 33 (1981), no. 5, 1157–1164. MR 638372, DOI https://doi.org/10.4153/CJM-1981-087-1
- Irwin Kra, Automorphic forms and Kleinian groups, W. A. Benjamin, Inc., Reading, Mass., 1972. Mathematics Lecture Note Series. MR 0357775
- N. Lakic, An isometry theorem for quadraric differentials on Riemann surfaces of finite genus, Trans. Amer. Math. Soc., to appear.
- Olli Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, vol. 109, Springer-Verlag, New York, 1987. MR 867407
- Albert Marden and Howard Masur, A foliation of Teichmüller space by twist invariant disks, Math. Scand. 36 (1975), no. 2, 211–228. MR 393584, DOI https://doi.org/10.7146/math.scand.a-11572
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- Kung Fu Ng, On a theorem of Dixmier, Math. Scand. 29 (1971), 279–280 (1972). MR 338740, DOI https://doi.org/10.7146/math.scand.a-11054
- T. Ohsawa, On the analytic structure of certain infinite dimensional Teichmüller spaces.
- H. L. Royden, Automorphisms and isometries of Teichmüller space, Proceedings of the Romanian-Finnish Seminar on Teichmüller Spaces and Quasiconformal Mappings (Braşov, 1969) Publ. House of the Acad. of the Socialist Republic of Romania, Bucharest, 1971, pp. 273–286. (errata insert). MR 0302894
- Walter Rudin, Function theory in the unit ball of ${\bf C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- ---, Functional Analysis, Second Edition, McGraw-Hill, New York, 1992.
- A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302. MR 283559, DOI https://doi.org/10.1090/S0002-9947-1971-0283559-3
- Kurt Strebel, On quadratic differentials and extremal quasi-conformal mappings, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 223–227. MR 0507848
- Kurt Strebel, On the existence of extremal Teichmueller mappings, J. Analyse Math. 30 (1976), 464–480. MR 440031, DOI https://doi.org/10.1007/BF02786734
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423
- Harumi Tanigawa, Holomorphic families of geodesic discs in infinite-dimensional Teichmüller spaces, Nagoya Math. J. 127 (1992), 117–128. MR 1183655, DOI https://doi.org/10.1017/S0027763000004128
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 32G15, 30C62, 30C75
Retrieve articles in all journals with MSC (1991): 32G15, 30C62, 30C75
Additional Information
Clifford J. Earle
Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853
Email:
cliff@math.cornell.edu
Frederick P. Gardiner
Affiliation:
Department of Mathematics, Brooklyn College, City University of New York, Brooklyn, New York 11210
MR Author ID:
198854
Email:
fpgbc@cunyvm.cuny.edu
Received by editor(s):
March 15, 1995
Additional Notes:
Research of the first author was partly supported by NSF Grant DMS 9206924 and by a grant from MSRI; of the second, by NSF Grant DMS 9204069.
Article copyright:
© Copyright 1996
American Mathematical Society