On transversely flat conformal foliations
with good measures
Author:
Taro Asuke
Journal:
Trans. Amer. Math. Soc. 348 (1996), 1939-1958
MSC (1991):
Primary 53C12, 57R30, 53C10; Secondary 53A30, 57R20
DOI:
https://doi.org/10.1090/S0002-9947-96-01598-X
MathSciNet review:
1348855
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Transversely flat conformal foliations with good transverse invariant measures are Riemannian in the sense. In particular, transversely similar foliations with good measures are transversely Riemannian as transversely
-foliations.
- 1. Boris N. Apanasov, Kobayashi conformal metric on manifolds, Chern-Simons and 𝜂-invariants, Internat. J. Math. 2 (1991), no. 4, 361–382. MR 1113566, https://doi.org/10.1142/S0129167X9100020X
- 2. T. Asuke, Classification of Riemannian flows with transverse similarity structures, preprint.
- 3. Robert A. Blumenthal, Stability theorems for conformal foliations, Proc. Amer. Math. Soc. 91 (1984), no. 3, 485–491. MR 744654, https://doi.org/10.1090/S0002-9939-1984-0744654-X
- 4. Yves Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52 (French). Transversal structure of foliations (Toulouse, 1982). MR 755161
- 5. David Fried, Closed similarity manifolds, Comment. Math. Helv. 55 (1980), no. 4, 576–582. MR 604714, https://doi.org/10.1007/BF02566707
- 6. Étienne Ghys, Flots transversalement affines et tissus feuilletés, Mém. Soc. Math. France (N.S.) 46 (1991), 123–150 (French). Analyse globale et physique mathématique (Lyon, 1989). MR 1125840
- 7. J. Heitsch and S. Hurder, Secondary classes, Weil measures and the geometry of foliations, J. Differential Geom. 20 (1984), no. 2, 291–309. MR 788282
- 8. Ravi S. Kulkarni and Ulrich Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994), no. 1, 89–129. MR 1273468, https://doi.org/10.1007/BF02572311
- 9. Shigenori Matsumoto, Foundations of flat conformal structure, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 167–261. MR 1208312, https://doi.org/10.2969/aspm/02010167
- 10. Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463
- 11. Toshiyuki Nishimori, A note on the classification of nonsingular flows with transverse similarity structures, Hokkaido Math. J. 21 (1992), no. 3, 381–393. MR 1191025, https://doi.org/10.14492/hokmj/1381413717
- 12. J. F. Plante, Foliations with measure preserving holonomy, Ann. of Math. (2) 102 (1975), no. 2, 327–361. MR 391125, https://doi.org/10.2307/1971034
- 13. Izu Vaisman, Conformal foliations, Kodai Math. J. 2 (1979), no. 1, 26–37. MR 531785
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C12, 57R30, 53C10, 53A30, 57R20
Retrieve articles in all journals with MSC (1991): 53C12, 57R30, 53C10, 53A30, 57R20
Additional Information
Taro Asuke
Affiliation:
3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan
Email:
asuke@ms.u-tokyo.ac.jp
DOI:
https://doi.org/10.1090/S0002-9947-96-01598-X
Keywords:
Foliation,
transverse structure,
invariant measure,
Riemannian foliation,
conformal structure
Received by editor(s):
May 8, 1995
Article copyright:
© Copyright 1996
American Mathematical Society