Higher Lefschetz Traces and
Spherical Euler Characteristics
Authors:
Ross Geoghegan, Andrew Nicas and John Oprea
Journal:
Trans. Amer. Math. Soc. 348 (1996), 2039-2062
MSC (1991):
Primary 55M20; Secondary 55N45, 55R12, 58F05
DOI:
https://doi.org/10.1090/S0002-9947-96-01615-7
MathSciNet review:
1351489
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Higher analogs of the Euler characteristic and Lefschetz number are introduced. It is shown that they possess a variety of properties generalizing known features of those classical invariants. Applications are then given. In particular, it is shown that the higher Euler characteristics are obstructions to homotopy properties such as the TNCZ condition, and to a manifold being homologically Kähler.
- [BG] J. C. Becker and D. H. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), no. 2, 107–133. MR 436137
- [B] A. Blanchard, Sur les variétés analytiques complexes, Annales Ec. Norm. Sup. 73 (1956), 157--202. MR 19:316a
- [Bo] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. MR 0116341
- [Br] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144
- [D1] Albrecht Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1–8. MR 193634, https://doi.org/10.1016/0040-9383(65)90044-3
- [D2] Albrecht Dold, The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976), no. 3, 215–244. MR 433440, https://doi.org/10.1007/BF01214520
- [D3] Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196
- [GN] R. Geoghegan and A. Nicas, Higher Euler characteristics (I), L'Enseign. Math. 41 (1995), 3--62. CMP 95:15
- [Go1] D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840–856. MR 189027, https://doi.org/10.2307/2373248
- [Go2] Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, https://doi.org/10.2307/2373349
- [Go3] Daniel Henry Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23–50. MR 309111, https://doi.org/10.1090/S0002-9947-1972-0309111-X
- [Kir] Frances Clare Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984. MR 766741
- [Kn] R. J. Knill, On the homology of a fixed point set, Bull. Amer. Math. Soc. 77 (1971), 184–190. MR 300274, https://doi.org/10.1090/S0002-9904-1971-12674-5
- [Le] J. Leray, Sur les équations et les transformations, J. Math. Pures Appl. (9) 24 (1946), 201--248. MR 7:468g
- [LO] Gregory Lupton and John Oprea, Cohomologically symplectic spaces: toral actions and the Gottlieb group, Trans. Amer. Math. Soc. 347 (1995), no. 1, 261–288. MR 1282893, https://doi.org/10.1090/S0002-9947-1995-1282893-4
- [M] Saunders MacLane, Homology, 1st ed., Springer-Verlag, Berlin-New York, 1967. Die Grundlehren der mathematischen Wissenschaften, Band 114. MR 0349792
- [Mc] John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- [Sp] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112
- [W] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55M20, 55N45, 55R12, 58F05
Retrieve articles in all journals with MSC (1991): 55M20, 55N45, 55R12, 58F05
Additional Information
Ross Geoghegan
Affiliation:
Department of Mathematics, SUNY at Binghamton, Binghamton, New York 13902–6000
Email:
ross@math.binghamton.edu
Andrew Nicas
Affiliation:
Department of Mathematics, McMaster University, Hamilton, Ontario L8S 4K1, Canada
Email:
nicas@mcmaster.ca
John Oprea
Affiliation:
Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115
Email:
oprea@math.csuohio.edu
DOI:
https://doi.org/10.1090/S0002-9947-96-01615-7
Received by editor(s):
October 27, 1994
Additional Notes:
The first author was partially supported by the National Science Foundation.
The second author was partially supported by the Natural Sciences and Engineering Research Council of Canada.
Article copyright:
© Copyright 1996
American Mathematical Society