Gross spaces
HTML articles powered by AMS MathViewer
- by Saharon Shelah and Otmar Spinas
- Trans. Amer. Math. Soc. 348 (1996), 4257-4277
- DOI: https://doi.org/10.1090/S0002-9947-96-01658-3
- PDF | Request permission
Abstract:
A Gross space is a vector space $E$ of infinite dimension over some field $F$, which is endowed with a symmetric bilinear form $\Phi :E^{2} \rightarrow F$ and has the property that every infinite dimensional subspace $U\subseteq E$ satisfies dim $U^{\perp }<$ dim $E$. Gross spaces over uncountable fields exist (in certain dimensions) (see [H. Gross and E. Ogg, Quadratic spaces with few isometries, Comment. Math. Helv. 48 (1973), 511-519]). The existence of a Gross space over countable or finite fields (in a fixed dimension not above the continuum) is independent of the axioms of ZFC. Here we continue the investigation of Gross spaces. Among other things, we show that if the cardinal invariant b equals $\omega _{1}$, a Gross space in dimension $\omega _{1}$ exists over every infinite field, and that it is consistent that Gross spaces exist over every infinite field but not over any finite field. We also generalize the notion of a Gross space and construct generalized Gross spaces in ZFC.References
- B. Balcar and P. Simon, Cardinal invariants in Boolean spaces, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 39–47. MR 698388
- James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775, DOI 10.1017/CBO9780511758867.002
- James E. Baumgartner and Otmar Spinas, Independence and consistency proofs in quadratic form theory, J. Symbolic Logic 56 (1991), no. 4, 1195–1211. MR 1136450, DOI 10.2307/2275468
- Walter Baur and Herbert Gross, Strange inner product spaces, Comment. Math. Helv. 52 (1977), no. 4, 491–495. MR 457475, DOI 10.1007/BF02567381
- Andreas Blass and Saharon Shelah, There may be simple $P_{\aleph _1}$- and $P_{\aleph _2}$-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243. MR 879489, DOI 10.1016/0168-0072(87)90082-0
- Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
- D. H. Fremlin, Cichoń’s diagram, Initiation à l’Analyse, Université Piere et Marie Curie, Paris, 1985.
- Herbert Gross, Quadratic forms in infinite-dimensional vector spaces, Progress in Mathematics, vol. 1, Birkhäuser, Boston, Mass., 1979. MR 537283
- Herbert Gross and Erwin Ogg, Quadratic forms and linear topologies. VI. Quadratic spaces with few isometries, Comment. Math. Helv. 48 (1973), 511–519. MR 370131, DOI 10.1007/BF02566137
- Martin Goldstern, Tools for your forcing construction, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 305–360. MR 1234283
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Jaime I. Ihoda and Saharon Shelah, Souslin forcing, J. Symbolic Logic 53 (1988), no. 4, 1188–1207. MR 973109, DOI 10.2307/2274613
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- R. H. J. Germay, Généralisation de l’équation de Hesse, Ann. Soc. Sci. Bruxelles Sér. I 59 (1939), 139–144 (French). MR 86
- Saharon Shelah, Vive la différence. I. Nonisomorphism of ultrapowers of countable models, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 357–405. MR 1233826, DOI 10.1007/978-1-4613-9754-0_{2}0
- S. Shelah, Strong negative partition relations below the continuum, Acta Math. Hungar. 58 (1991), no. 1-2, 95–100. MR 1152830, DOI 10.1007/BF01903551
- S. Shelah, There are Jońsson algebras in many inaccessible cardinals, Cardinal Arithmetic, Oxford University Press, 1994.
- S. Shelah, Further cardinal arithmetic, in press ([Sh430] in Shelah’s list of publications), Israel Journal of Mathematics.
- S. Shelah, Colouring and $\aleph _{2}$-c.c. not productive, in preparation ([Sh572] in Shelah’s list of publications).
- O. Spinas, Konsistenz- und Unabhängigkeitsresultate in der Theorie der quadratischen Formen, Dissertation, University of Zürich, 1989.
- O. Spinas, Iterated forcing in quadratic form theory, Israel J. Math. 79 (1992), no. 2-3, 297–315. MR 1248920, DOI 10.1007/BF02808222
- O. Spinas, An undecidability result in lattice theory, Abstracts of papers presented to the AMS 11, no. 2. (March 1990), 161.
- Otmar Spinas, Cardinal invariants and quadratic forms, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 563–581. MR 1234289
Bibliographic Information
- Saharon Shelah
- Affiliation: Department of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@math.huji.ac.il
- Otmar Spinas
- Affiliation: Department of Mathematics, University of California, Irvine, California 92717
- Email: ospinas@math.uci.edu
- Received by editor(s): August 1, 1995
- Additional Notes: The authors are supported by the Basic Research Foundation of the Israel Academy of Science.
- © Copyright 1996 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 348 (1996), 4257-4277
- MSC (1991): Primary 11E04, 03E35; Secondary 12L99, 15A36
- DOI: https://doi.org/10.1090/S0002-9947-96-01658-3
- MathSciNet review: 1357403