Strict definiteness of integrals via complete monotonicity of derivatives
HTML articles powered by AMS MathViewer
- by L. Mattner
- Trans. Amer. Math. Soc. 349 (1997), 3321-3342
- DOI: https://doi.org/10.1090/S0002-9947-97-01966-1
- PDF | Request permission
Abstract:
Let $k$ be a nonnegative integer and let $\phi : (0,\infty ) \rightarrow \mathbb {R}$ be a $C^\infty$ function with $(-)^k\cdot \phi ^{(k)}$ completely monotone and not constant. If $\sigma \neq 0$ is a signed measure on any euclidean space $\mathbb {R}^d$, with vanishing moments up to order $k-1$, then the integral $\int _{\mathbb {R}^d} \int _{\mathbb {R}^d} \phi ( \|x-y\|^2 ) d\sigma (x) d\sigma (y)$ is strictly positive whenever it exists. For general $d$ no larger class of continuous functions $\phi$ seems to admit the same conclusion. Examples and applications are indicated. A section on ”bilinear integrability” might be of independent interest.References
- Ralph Alexander and Kenneth B. Stolarsky, Extremal problems of distance geometry related to energy integrals, Trans. Amer. Math. Soc. 193 (1974), 1–31. MR 350629, DOI 10.1090/S0002-9947-1974-0350629-3
- Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984. Theory of positive definite and related functions. MR 747302, DOI 10.1007/978-1-4612-1128-0
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- R. N. Bhattacharya and R. Ranga Rao, Normal approximation and asymptotic expansions, Robert E. Krieger Publishing Co., Inc., Melbourne, FL, 1986. Reprint of the 1976 original. MR 855460
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Andreas Buja, B. F. Logan, J. A. Reeds, and L. A. Shepp, Inequalities and positive-definite functions arising from a problem in multidimensional scaling, Ann. Statist. 22 (1994), no. 1, 406–438. MR 1272091, DOI 10.1214/aos/1176325376
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Carl-Gustav Esseen, Bounds for the absolute third moment, Scand. J. Statist. 2 (1975), no. 3, 149–152. MR 383495
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- O. Frostmann, Potentiel d’équilibre et capacité des ensemble avec quelques applications a la théorie des fonctions. Thèse, Lund. Meddelanden Lunds Univ. Mat. Sem. 3 1935.
- K. Guo, S. Hu, and X. Sun, Conditionally positive definite functions and Laplace-Stieltjes integrals, J. Approx. Theory 74 (1993), no. 3, 249–265. MR 1233454, DOI 10.1006/jath.1993.1065
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- Einar Hille, Methods in classical and functional analysis, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1972. MR 0463863
- W. C. M. Kallenberg, Problem 319. Statistica Neerlandica 49 (1995), 132.
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- L. Mattner, Behandlung einiger Extremalprobleme für Wahrscheinlichkeitsverteilungen. Dissertation, Universität Hannover, 1990.
- L. Mattner, Completeness of location families, translated moments, and uniqueness of charges, Probab. Theory Related Fields 92 (1992), no. 2, 137–149. MR 1161183, DOI 10.1007/BF01194918
- L. Mattner, Extremal problems for probability distributions: a general method and some examples, Stochastic inequalities (Seattle, WA, 1991) IMS Lecture Notes Monogr. Ser., vol. 22, Inst. Math. Statist., Hayward, CA, 1992, pp. 274–283. MR 1228070, DOI 10.1214/lnms/1215461957
- L. Mattner, Bernstein’s theorem, inversion formula of Post and Widder, and the uniqueness theorem for Laplace transforms, Exposition. Math. 11 (1993), no. 2, 137–140. MR 1214665
- Charles A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), no. 1, 11–22. MR 891767, DOI 10.1007/BF01893414
- George Pólya, Collected papers, Mathematicians of Our Time, Vol. 7, MIT Press, Cambridge, Mass.-London, 1974. Vol. 1: Singularities of analytic functions; Edited by R. P. Boas. MR 0505093
- Marcel Riesz, Collected papers, Springer-Verlag, Berlin, 1988 (French). Edited and with a preface by Lars Gårding and Lars Hörmander; With a contribution by Gårding. MR 962287, DOI 10.1007/978-3-642-37535-4
- Walter Rudin, Representation of functions by convolutions, J. Math. Mech. 7 (1958), 103–115. MR 0104981, DOI 10.1512/iumj.1958.7.57009
- Walter Rudin, Real and complex analysis, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 0344043
- Zoltán Sasvári, Positive definite and definitizable functions, Mathematical Topics, vol. 2, Akademie Verlag, Berlin, 1994. MR 1270018
- I. J. Schoenberg, Selected papers. Vol. 1, Contemporary Mathematicians, Birkhäuser Boston, Inc., Boston, MA, 1988. With contributions by P. Erdős, J.-L. Goffin, S. Cambanis, D. Richards, R. Askey and S. Ruscheweyh; Edited and with a foreword by Carl de Boor. MR 1015295
Bibliographic Information
- L. Mattner
- Affiliation: Universität Hamburg, Institut für Mathematische Stochastik, Bundesstr. 55, D–20146 Hamburg, Germany
- MR Author ID: 315405
- Email: mattner@math.uni--hamburg.de
- Received by editor(s): January 28, 1996
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 3321-3342
- MSC (1991): Primary 26D15, 43A35, 31A15, 60E15
- DOI: https://doi.org/10.1090/S0002-9947-97-01966-1
- MathSciNet review: 1422615
Dedicated: Dedicated with gratitude to Professor Erwin Mues, on the occasion of his sixtieth birthday