On the convergence of $\sum c_nf(nx)$ and the Lip 1/2 class
HTML articles powered by AMS MathViewer
- by István Berkes
- Trans. Amer. Math. Soc. 349 (1997), 4143-4158
- DOI: https://doi.org/10.1090/S0002-9947-97-01837-0
- PDF | Request permission
Abstract:
We investigate the almost everywhere convergence of $\sum c_{n} f(nx)$, where $f$ is a measurable function satisfying \begin{equation*} f(x+1) = f(x), \qquad \int _{0}^{1} f(x) dx =0.\end{equation*} By a known criterion, if $f$ satisfies the above conditions and belongs to the Lip $\alpha$ class for some $\alpha > 1/2$, then $\sum c_{n} f(nx)$ is a.e. convergent provided $\sum c_{n}^{2} < +\infty$. Using probabilistic methods, we prove that the above result is best possible; in fact there exist Lip 1/2 functions $f$ and almost exponentially growing sequences $(n_{k})$ such that $\sum c_{k} f(n_{k} x)$ is a.e. divergent for some $(c_{k})$ with $\sum c_{k}^{2} < +\infty$. For functions $f$ with Fourier series having a special structure, we also give necessary and sufficient convergence criteria. Finally we prove analogous results for the law of the iterated logarithm.References
- I. Berkes, An almost sure invariance principle for lacunary trigonometric series, Acta Math. Acad. Sci. Hungar. 26 (1975), 209–220. MR 426085, DOI 10.1007/BF01895964
- I. Berkes, Critical LIL behavior of the trigonometric system, Trans. Amer. Math. Soc. 338 (1993), no. 2, 553–585. MR 1099352, DOI 10.1090/S0002-9947-1993-1099352-2
- I. Berkes, An optimal condition for the LIL for trigonometric series, Trans. Amer. Math. Soc. 347 (1995), no. 2, 515–530. MR 1282883, DOI 10.1090/S0002-9947-1995-1282883-1
- István Berkes and Walter Philipp, The size of trigonometric and Walsh series and uniform distribution $\textrm {mod}\ 1$, J. London Math. Soc. (2) 50 (1994), no. 3, 454–464. MR 1299450, DOI 10.1112/jlms/50.3.454
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- Sompong Dhompongsa, Uniform laws of the iterated logarithm for Lipschitz classes of functions, Acta Sci. Math. (Szeged) 50 (1986), no. 1-2, 105–124. MR 862186
- J. J. Corliss, Upper limits to the real roots of a real algebraic equation, Amer. Math. Monthly 46 (1939), 334–338. MR 4, DOI 10.1080/00029890.1939.11998880
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- P. Erdős, On trigonometric sums with gaps, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 37–42 (English, with Russian summary). MR 145264
- V. F. Gapoškin, Lacunary series and independent functions, Uspehi Mat. Nauk 21 (1966), no. 6 (132), 3–82 (Russian). MR 0206556
- V. F. Gapoškin, On series with respect to the system $\{\varphi (nx)\}$, Mat. Sb. (N.S.) 69 (111) (1966), 328–353 (Russian). MR 0198039
- V. F. Gapoškin, A convergence system, Mat. Sb. (N.S.) 74 (116) (1967), 93–99 (Russian). MR 0216230
- V. F. Gapoškin, Convergence and divergence systems, Mat. Zametki 4 (1968), 253–260 (Russian). MR 233139
- Albert Eagle, Series for all the roots of a trinomial equation, Amer. Math. Monthly 46 (1939), 422–425. MR 5, DOI 10.2307/2303036
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888
- R. Kaufman and Walter Philipp, A uniform law of the iterated logarithm for classes of functions, Ann. Probab. 6 (1978), no. 6, 930–952 (1979). MR 512412, DOI 10.1214/aop/1176995385
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- J. M. Marstrand, On Khinchin’s conjecture about strong uniform distribution, Proc. London Math. Soc. (3) 21 (1970), 540–556. MR 291091, DOI 10.1112/plms/s3-21.3.540
- E. M. Nikišin, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970), no. 6(156), 129–191 (Russian). MR 0296584
- Walter Philipp, Limit theorems for lacunary series and uniform distribution $\textrm {mod}\ 1$, Acta Arith. 26 (1974/75), no. 3, 241–251. MR 379420, DOI 10.4064/aa-26-3-241-251
- Shigeru Takahashi, An asymptotic property of a gap sequence, Proc. Japan Acad. 38 (1962), 101–104. MR 140865
- G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math. 46 (1973), 17–30. MR 331007, DOI 10.2140/pjm.1973.46.17
- Shigeru Takahashi, On the law of the iterated logarithm for lacunary trigonometric series. II, Tohoku Math. J. (2) 27 (1975), no. 3, 391–403. MR 440269, DOI 10.2748/tmj/1203529250
- Shigeru Takahashi, An asymptotic behavior of $\{f(n_kt)\}$, Sci. Rep. Kanazawa Univ. 33 (1988), no. 2, 27–36. MR 998342
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- István Berkes
- Affiliation: Mathematical Institute of the Hungarian Academy of Sciences, H-1364 Budapest, P.O.B. 127, Hungary
- MR Author ID: 35400
- Email: berkes@math-inst.hu
- Received by editor(s): March 27, 1996
- Additional Notes: Research supported by Hungarian National Foundation for Scientific Research, Grants T 16384 and T 19346
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 4143-4158
- MSC (1991): Primary 42A55, 42A61
- DOI: https://doi.org/10.1090/S0002-9947-97-01837-0
- MathSciNet review: 1401764