## The approximate functional formula for the theta function and Diophantine Gauss sums

HTML articles powered by AMS MathViewer

- by E. A. Coutsias and N. D. Kazarinoff PDF
- Trans. Amer. Math. Soc.
**350**(1998), 615-641 Request permission

## Abstract:

We consider the polygonal lines in the complex plane $\Bbb {C}$ whose $N$-th vertex is defined by $S_N = \sum _{n=0}^{N ’} \exp (i\omega \pi n^2)$ (with $\omega \in \Bbb {R}$), where the prime means that the first and last terms in the sum are halved. By introducing the discrete curvature of the polygonal line, and by exploiting the similarity of segments of the line, for small $\omega$, to Cornu spirals (C-spirals), we prove the precise renormalization formula \begin{equation} \begin {split} &\left | \sum _{k=0}^{N} ’ \exp (i\omega \pi k^2) -\frac {\exp (sgn(\omega )i\pi /4)}{\sqrt {|\omega |}} \sum _{k=0}^n ’ \exp (-i\frac {\pi }{\omega } k^2)\right |\\ &\qquad \leq C \left |\frac {\omega N - n}{\omega }\right |, 0<|\omega | <1, \end{split} \end{equation} where $N=[[n/\omega ]]$, the nearest integer to $n/\omega$ and $1<C<3.14$ . This formula, which sharpens Hardy and Littlewood’s approximate functional formula for the theta function, generalizes to irrationals, as a Diophantine inequality, the well-known sum formula of Gauss. The geometrical meaning of the relation between the two limits is that the first sum is taken to a point of inflection of the corresponding C-spirals. The second sum replaces whole C-spirals of the first by unit vectors times scale and phase factors. The block renormalization procedure implied by this replacement is governed by the circle map \begin{equation} \omega \rightarrow -\frac {1}{\omega } \pmod 2 , \omega \in ]-1,+1[ \setminus \{0\}, \end{equation} whose orbits are analyzed by expressing $\omega$ as an even continued fraction.## References

- Tom M. Apostol,
*Introduction to analytic number theory*, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR**0434929** - M. V. Berry and J. Goldberg,
*Renormalisation of curlicues*, Nonlinearity**1**(1988), no. 1, 1–26. MR**928946**, DOI 10.1088/0951-7715/1/1/001 - M. V. Berry,
*Random renormalization in the semiclassical long-time limit of a precessing spin*, Phys. D**33**(1988), no. 1-3, 26–33. Progress in chaotic dynamics. MR**984607**, DOI 10.1016/S0167-2789(98)90006-9 - J.L. Callot and M. Diener, “Variations en spirale”, Document du travail 6, p. 16-50, Oran, 1984.
- K. Chandrasekharan,
*Elliptic functions*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR**808396**, DOI 10.1007/978-3-642-52244-4 - J.G. van der Corput, Über Summen die mit den Elliptischen $\theta$-Funktionen zusammenhägen, I, II, Math. Ann. 87, (1922), 66-77; 90, (1923), 1-18.
- J.G. van der Corput, Beweis einer approximativen Funktionalgleichung, Mathematische Zeitschrift, 28 (1928) 238-300.
- Evangelos A. Coutsias and Nicholas D. Kazarinoff,
*Disorder, renormalizability, theta functions and Cornu spirals*, Phys. D**26**(1987), no. 1-3, 295–310. MR**892449**, DOI 10.1016/0167-2789(87)90230-2 - F. M. Dekking and M. Mendès France,
*Uniform distribution modulo one: a geometrical viewpoint*, J. Reine Angew. Math.**329**(1981), 143–153. MR**636449**, DOI 10.1515/crll.1981.329.143 - Jean-Marc Deshouillers,
*Geometric aspect of Weyl sums*, Elementary and analytic theory of numbers (Warsaw, 1982) Banach Center Publ., vol. 17, PWN, Warsaw, 1985, pp. 75–82. MR**840473** - G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation, Acta Math.
**37**, (1914), 193-238. - Peter Henrici,
*Applied and computational complex analysis. Vol. 2*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR**0453984** - Joseph B. Keller and Charles Knessl,
*Asymptotic evaluation of oscillatory sums*, European J. Appl. Math.**4**(1993), no. 4, 361–379. MR**1251820**, DOI 10.1017/S0956792500001182 - N. M. Korobov,
*Exponential sums and their applications*, Mathematics and its Applications (Soviet Series), vol. 80, Kluwer Academic Publishers Group, Dordrecht, 1992. Translated from the 1989 Russian original by Yu. N. Shakhov. MR**1162539**, DOI 10.1007/978-94-015-8032-8 - L. Kronecker, Summierung der Gaussschen Reihen $\sum _{h=0}^{h=n-1}e^{2h^2\pi i/n}$, Journal für die reine und angewandte Mathematik,
**105**(1889), 267-268. - D. H. Lehmer,
*Incomplete Gauss sums*, Mathematika**23**(1976), no. 2, 125–135. MR**429787**, DOI 10.1112/S0025579300008718 - J. H. Loxton,
*The graphs of exponential sums*, Mathematika**30**(1983), no. 2, 153–163 (1984). MR**737174**, DOI 10.1112/S0025579300010500 - Jacques Bélair and Serge Dubuc (eds.),
*Fractal geometry and analysis*, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 346, Kluwer Academic Publishers Group, Dordrecht, 1991. MR**1140718**, DOI 10.1007/978-94-015-7931-5 - Hugh L. Montgomery,
*Ten lectures on the interface between analytic number theory and harmonic analysis*, CBMS Regional Conference Series in Mathematics, vol. 84, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. MR**1297543**, DOI 10.1090/cbms/084 - R. R. Moore and A. J. van der Poorten,
*On the thermodynamics of curves and other curlicues*, Miniconference on Geometry and Physics (Canberra, 1989) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 22, Austral. Nat. Univ., Canberra, 1989, pp. 82–109. MR**1027862** - L.J. Mordell, The approximate functional formula for the theta function, J. London Mat. Soc.
**1**(1926) 68-72. - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - J. R. Wilton, The approximate functional formula for the theta function, J. London Math. Soc.
**2**(1926), 177-180.

## Additional Information

**E. A. Coutsias**- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
- Email: vageli@math.unm.edu
**N. D. Kazarinoff**- Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
- Received by editor(s): January 25, 1995
- Received by editor(s) in revised form: December 4, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 615-641 - MSC (1991): Primary 11G10; Secondary 11L05, 11L07, 11J25, 11J70
- DOI: https://doi.org/10.1090/S0002-9947-98-02024-8
- MathSciNet review: 1443869