Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On hyper Kähler manifolds associated to Lagrangian Kähler submanifolds of $T^\ast \mathbb \{C\}^n$
HTML articles powered by AMS MathViewer

by Vicente Cortés PDF
Trans. Amer. Math. Soc. 350 (1998), 3193-3205 Request permission

Abstract:

For any Lagrangian Kähler submanifold $M \subset T^*\mathbb {C}^n$, there exists a canonical hyper Kähler metric on $T^*M$. A Kähler potential for this metric is given by the generalized Calabi Ansatz of the theoretical physicists Cecotti, Ferrara and Girardello. This correspondence provides a method for the construction of (pseudo) hyper Kähler manifolds with large automorphism group. Using it, an interesting class of pseudo hyper Kähler manifolds of complex signature $(2,2n)$ is constructed. For any manifold $N$ in this class a group of automorphisms with a codimension one orbit on $N$ is specified. Finally, it is shown that the bundle of intermediate Jacobians over the moduli space of gauged Calabi Yau 3-folds admits a natural pseudo hyper Kähler metric of complex signature $(2,2n)$.
References
  • D.V. Alekseevsky: Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija 9, No. 2 (1975), 297-339.
  • D.V. Alekseevsky, V. Cortés: Isometry groups of homogeneous quaternionic Kähler manifolds (to appear in Journal of Geometric Analysis); available as preprint Erwin Schrödinger Institut 230 (1995).
  • D.V. Alekseevsky, V. Cortés: Classification of stationary compact homogeneous special pseudo Kähler manifolds of semisimple group (to appear); available as preprint SFFB256 no. 519 (1997).
  • Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
  • F. A. Bogomolov, Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR 243 (1978), no. 5, 1101–1104 (Russian). MR 514769
  • Robert L. Bryant and Phillip A. Griffiths, Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 77–102. MR 717607
  • S. Cecotti, Homogeneous Kähler manifolds and $T$-algebras in $N=2$ supergravity and superstrings, Comm. Math. Phys. 124 (1989), no. 1, 23–55. MR 1012857
  • S. Cecotti, S. Ferrara, and L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories, Internat. J. Modern Phys. A 4 (1989), no. 10, 2475–2529. MR 1017548, DOI 10.1142/S0217751X89000972
  • Vicente Cortés, Alekseevskian spaces, Differential Geom. Appl. 6 (1996), no. 2, 129–168. MR 1395026, DOI 10.1016/0926-2245(96)89146-7
  • V. Cortés, Homogeneous special geometry, Transform. Groups 1 (1996), no. 4, 337–373. MR 1424448, DOI 10.1007/BF02549212
  • B. de Wit, F. Vanderseypen, and A. Van Proeyen, Symmetry structure of special geometries, Nuclear Phys. B 400 (1993), no. 1-3, 463–521. MR 1227264, DOI 10.1016/0550-3213(93)90413-J
  • B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Comm. Math. Phys. 149 (1992), no. 2, 307–333. MR 1186031
  • Ron Donagi and Eyal Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, Integrable systems and quantum groups (Montecatini Terme, 1993) Lecture Notes in Math., vol. 1620, Springer, Berlin, 1996, pp. 1–119. MR 1397273, DOI 10.1007/BFb0094792
  • S. Ferrara and S. Sabharwal, Quaternionic manifolds for type $\textrm {II}$ superstring vacua of Calabi-Yau spaces, Nuclear Phys. B 332 (1990), no. 2, 317–332. MR 1046353, DOI 10.1016/0550-3213(90)90097-W
  • Phillip A. Griffiths, Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568–626. MR 229641, DOI 10.2307/2373545
  • Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • Maxim Kontsevich, Mirror symmetry in dimension $3$, Astérisque 237 (1996), Exp. No. 801, 5, 275–293. Séminaire Bourbaki, Vol. 1994/95. MR 1423628
  • H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
  • James Morrow and Kunihiko Kodaira, Complex manifolds, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1971. MR 0302937
  • S.-T. Yau (ed.), Mathematical aspects of string theory, Advanced Series in Mathematical Physics, vol. 1, World Scientific Publishing Co., Singapore, 1987. MR 915812, DOI 10.1142/0383
  • Andrey N. Todorov, The Weil-Petersson geometry of the moduli space of $\textrm {SU}(n\geq 3)$ (Calabi-Yau) manifolds. I, Comm. Math. Phys. 126 (1989), no. 2, 325–346. MR 1027500
  • Shing-Tung Yau (ed.), Essays on mirror manifolds, International Press, Hong Kong, 1992. MR 1191418
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C25
  • Retrieve articles in all journals with MSC (1991): 53C25
Additional Information
  • Vicente Cortés
  • Affiliation: Mathematisches Institut der Universität Bonn, Beringstr. 1, 53115 Bonn, Germany
  • Email: vicente@math.uni-bonn.de
  • Received by editor(s): August 29, 1996
  • Additional Notes: Supported by the Alexander von Humboldt Foundation and MSRI (Berkeley). Research at MSRI is supported in part by grant DMS-9022140.
  • © Copyright 1998 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 350 (1998), 3193-3205
  • MSC (1991): Primary 53C25
  • DOI: https://doi.org/10.1090/S0002-9947-98-02156-4
  • MathSciNet review: 1466946