## Characterizations of weakly compact operators on $C_o(T)$

HTML articles powered by AMS MathViewer

- by T. V. Panchapagesan PDF
- Trans. Amer. Math. Soc.
**350**(1998), 4849-4867 Request permission

## Abstract:

Let $T$ be a locally compact Hausdorff space and let $C_o(T)= \{f : T \rightarrow \mathbb {C}$, $f$ is continuous and vanishes at infinity} be provided with the supremum norm. Let $\mathcal {B}_c(T)$ and $\mathcal {B}_o(T)$ be the $\sigma$-rings generated by the compact subsets and by the compact $G_\delta$ subsets of $T$, respectively. The members of $\mathcal {B}_c(T)$ are called $\sigma$-Borel sets of $T$ since they are precisely the $\sigma$-bounded Borel sets of $T$. The members of $\mathcal {B}_o(T)$ are called the Baire sets of $T$. $M(T)$ denotes the dual of $C_o(T)$. Let $X$ be a quasicomplete locally convex Hausdorff space. Suppose $u: C_o(T) \rightarrow X$ is a continuous linear operator. Using the Baire and $\sigma$-Borel characterizations of weakly compact sets in $M(T)$ as given in a previous paper of the author’s and combining the integration technique of Bartle, Dunford and Schwartz, we obtain 35 characterizations for the operator $u$ to be weakly compact, several of which are new. The independent results on the regularity and on the regular Borel extendability of $\sigma$-additive $X$-valued Baire measures are deduced as an immediate consequence of these characterizations. Some other applications are also included.## References

- Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR**0453964** - Reinhold Baer,
*Groups with Abelian norm quotient group*, Amer. J. Math.**61**(1939), 700–708. MR**34**, DOI 10.2307/2371324 - N. Dinculeanu and I. Kluvanek,
*On vector measures*, Proc. London Math. Soc. (3)**17**(1967), 505–512. MR**214722**, DOI 10.1112/plms/s3-17.3.505 - N. Dinculeanu and Paul W. Lewis,
*Regularity of Baire measures*, Proc. Amer. Math. Soc.**26**(1970), 92–94. MR**260968**, DOI 10.1090/S0002-9939-1970-0260968-4 - Ivan Dobrakov,
*On integration in Banach spaces. IV*, Czechoslovak Math. J.**30(105)**(1980), no. 2, 259–279. With a loose Russian summary. MR**566051** - R. E. Edwards,
*Functional analysis. Theory and applications*, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR**0221256** - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - John Horváth,
*Topological vector spaces and distributions. Vol. I*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR**0205028** - Igor Kluvánek,
*Characterization of Fourier-Stieltjes transforms of vector and operator valued measures*, Czechoslovak Math. J.**17(92)**(1967), 261–277 (English, with Russian summary). MR**230872** - H. Reiter,
*Subalgebras of $L^{1}\,(G)$*, Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math.**27**(1965), 691–696. MR**0196515** - Hidegorô Nakano,
*Über Abelsche Ringe von Projektionsoperatoren*, Proc. Phys.-Math. Soc. Japan (3)**21**(1939), 357–375 (German). MR**94** - T. V. Panchapagesan,
*On complex Radon measures. II*, Czechoslovak Math. J.**43(118)**(1993), no. 1, 65–82. MR**1205231** - T. V. Panchapagesan,
*Abstract regularity of additive and $\sigma$-additive group-valued set functions*, Math. Slovaca**45**(1995), no. 4, 381–393. MR**1387055** - —,
*Baire and $\sigma$-Borel characterizations of weakly compact sets in $C_o(T)$*, Trans. Amer. Math. Soc. 350 (1998), 4839–4847. - —,
*On Radon vector measures I*, submitted. - A. Pełczyński,
*Projections in certain Banach spaces*, Studia Math.**19**(1960), 209–228. MR**126145**, DOI 10.4064/sm-19-2-209-228 - Walter Rudin,
*Functional analysis*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR**0365062** - Erik Thomas,
*L’intégration par rapport à une mesure de Radon vectorielle*, Ann. Inst. Fourier (Grenoble)**20**(1970), no. 2, 55–191 (1971) (French, with English summary). MR**463396** - Ju. B. Tumarkin,
*Locally convex spaces with basis*, Dokl. Akad. Nauk SSSR**195**(1970), 1278–1281 (Russian). MR**0271694**

## Additional Information

**T. V. Panchapagesan**- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
- Email: panchapa@ciens.ula.ve
- Received by editor(s): November 17, 1995
- Additional Notes: Supported by the C.D.C.H.T. project C-586 of the Universidad de los Andes, Mérida, and by the international cooperation project between CONICIT-Venezuela and CNR-Italy.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 4849-4867 - MSC (1991): Primary 47B38, 46G10; Secondary 28B05
- DOI: https://doi.org/10.1090/S0002-9947-98-02358-7
- MathSciNet review: 1615942

Dedicated: Dedicated to Professor V. K. Balachandran on the occasion of his seventieth birthday