## Baire and $\sigma$-Borel characterizations of weakly compact sets in $M(T)$

HTML articles powered by AMS MathViewer

- by T. V. Panchapagesan
- Trans. Amer. Math. Soc.
**350**(1998), 4839-4847 - DOI: https://doi.org/10.1090/S0002-9947-98-02359-9
- PDF | Request permission

## Abstract:

Let $T$ be a locally compact Hausdorff space and let $M(T)$ be the Banach space of all bounded complex Radon measures on $T$. Let $\mathcal {B}_o(T)$ and $\mathcal {B}_c(T)$ be the $\sigma$-rings generated by the compact $G_\delta$ subsets and by the compact subsets of $T$, respectively. The members of $\mathcal {B}_o(T)$ are called Baire sets of $T$ and those of $\mathcal {B}_c(T)$ are called $\sigma$-Borel sets of $T$ (since they are precisely the $\sigma$-bounded Borel sets of $T$). Identifying $M(T)$ with the Banach space of all Borel regular complex measures on $T$, in this note we characterize weakly compact subsets $A$ of $M(T)$ in terms of the Baire and $\sigma$-Borel restrictions of the members of $A$. These characterizations permit us to give a generalization of a theorem of Dieudonné which is stronger and more natural than that given by Grothendieck.## References

- Tadasi Nakayama,
*On Frobeniusean algebras. I*, Ann. of Math. (2)**40**(1939), 611–633. MR**16**, DOI 10.2307/1968946 - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR**0453964** - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Reinhold Baer,
*Groups with Abelian norm quotient group*, Amer. J. Math.**61**(1939), 700–708. MR**34**, DOI 10.2307/2371324 - N. Dinculeanu and I. Kluvanek,
*On vector measures*, Proc. London Math. Soc. (3)**17**(1967), 505–512. MR**214722**, DOI 10.1112/plms/s3-17.3.505 - Nelson Dunford and Jacob T. Schwartz,
*Linear Operators. I. General Theory*, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR**0117523** - R. E. Edwards,
*Functional analysis. Theory and applications*, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR**0221256** - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600–608. MR**11**, DOI 10.2307/1968944 - Igor Kluvánek,
*Characterization of Fourier-Stieltjes transforms of vector and operator valued measures*, Czechoslovak Math. J.**17(92)**(1967), 261–277 (English, with Russian summary). MR**230872** - T. V. Panchapagesan,
*On complex Radon measures. I*, Czechoslovak Math. J.**42(117)**(1992), no. 4, 599–612. MR**1182191** - T. V. Panchapagesan,
*On complex Radon measures. II*, Czechoslovak Math. J.**43(118)**(1993), no. 1, 65–82. MR**1205231** - —,
*Characterizations of weakly compact operators on $C_o(T)$*, Trans. Amer. Math. Soc. 350 (1998), 4849–4867. - Erik Thomas,
*L’intégration par rapport à une mesure de Radon vectorielle*, Ann. Inst. Fourier (Grenoble)**20**(1970), no. 2, 55–191 (1971) (French, with English summary). MR**463396**

## Bibliographic Information

**T. V. Panchapagesan**- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
- Email: panchapa@ciens.ula.ve
- Received by editor(s): November 17, 1995
- Additional Notes: Supported by the C.D.C.H.T. project C-586 of the Universidad de los Andes, Mérida, and by the international cooperation project between CONICIT-Venezuela and CNR-Italy.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 4839-4847 - MSC (1991): Primary 28A33, 28C05, 28C15; Secondary 46E27
- DOI: https://doi.org/10.1090/S0002-9947-98-02359-9
- MathSciNet review: 1615946