Baire and $\sigma$-Borel characterizations of weakly compact sets in $M(T)$
HTML articles powered by AMS MathViewer
- by T. V. Panchapagesan
- Trans. Amer. Math. Soc. 350 (1998), 4839-4847
- DOI: https://doi.org/10.1090/S0002-9947-98-02359-9
- PDF | Request permission
Abstract:
Let $T$ be a locally compact Hausdorff space and let $M(T)$ be the Banach space of all bounded complex Radon measures on $T$. Let $\mathcal {B}_o(T)$ and $\mathcal {B}_c(T)$ be the $\sigma$-rings generated by the compact $G_\delta$ subsets and by the compact subsets of $T$, respectively. The members of $\mathcal {B}_o(T)$ are called Baire sets of $T$ and those of $\mathcal {B}_c(T)$ are called $\sigma$-Borel sets of $T$ (since they are precisely the $\sigma$-bounded Borel sets of $T$). Identifying $M(T)$ with the Banach space of all Borel regular complex measures on $T$, in this note we characterize weakly compact subsets $A$ of $M(T)$ in terms of the Baire and $\sigma$-Borel restrictions of the members of $A$. These characterizations permit us to give a generalization of a theorem of Dieudonné which is stronger and more natural than that given by Grothendieck.References
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Reinhold Baer, Groups with Abelian norm quotient group, Amer. J. Math. 61 (1939), 700–708. MR 34, DOI 10.2307/2371324
- N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London Math. Soc. (3) 17 (1967), 505–512. MR 214722, DOI 10.1112/plms/s3-17.3.505
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Igor Kluvánek, Characterization of Fourier-Stieltjes transforms of vector and operator valued measures, Czechoslovak Math. J. 17(92) (1967), 261–277 (English, with Russian summary). MR 230872
- T. V. Panchapagesan, On complex Radon measures. I, Czechoslovak Math. J. 42(117) (1992), no. 4, 599–612. MR 1182191
- T. V. Panchapagesan, On complex Radon measures. II, Czechoslovak Math. J. 43(118) (1993), no. 1, 65–82. MR 1205231
- —, Characterizations of weakly compact operators on $C_o(T)$, Trans. Amer. Math. Soc. 350 (1998), 4849–4867.
- Erik Thomas, L’intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier (Grenoble) 20 (1970), no. 2, 55–191 (1971) (French, with English summary). MR 463396
Bibliographic Information
- T. V. Panchapagesan
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
- Email: panchapa@ciens.ula.ve
- Received by editor(s): November 17, 1995
- Additional Notes: Supported by the C.D.C.H.T. project C-586 of the Universidad de los Andes, Mérida, and by the international cooperation project between CONICIT-Venezuela and CNR-Italy.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4839-4847
- MSC (1991): Primary 28A33, 28C05, 28C15; Secondary 46E27
- DOI: https://doi.org/10.1090/S0002-9947-98-02359-9
- MathSciNet review: 1615946