Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Asymptotic formulae with remainder estimates for eigenvalue branches of the Schrödinger operator $H - \lambda W$ in a gap of $H$


Author: S. Z. Levendorskiĭ
Journal: Trans. Amer. Math. Soc. 351 (1999), 857-899
MSC (1991): Primary 35P20
DOI: https://doi.org/10.1090/S0002-9947-99-01994-7
MathSciNet review: 1433122
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Floquet theory provides a decomposition of a periodic Schrödinger operator into a direct integral, over a torus, of operators on a basic period cell. In this paper, it is proved that the same transform establishes a unitary equivalence between a multiplier by a decaying potential and a pseudo-differential operator on the torus, with an operator-valued symbol. A formula for the symbol is given. As applications, precise remainder estimates and two-term asymptotic formulas for spectral problems for a perturbed periodic Schrödinger operator are obtained.


References [Enhancements On Off] (What's this?)

  • D. K. Gvazava, A general integral of a class of nonlinear equations and its applications, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 90 (1988), 68–75 (Russian). MR 975696
  • Richard Beals, Weighted distribution spaces and pseudodifferential operators, J. Analyse Math. 39 (1981), 131–187. MR 632460, DOI https://doi.org/10.1007/BF02803334
  • M. Sh. Birman, Discrete spectrum in the gaps of a continuous one for perturbations with large coupling constant, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90) Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 57–73. MR 1306508
  • Birman, M.Š.: On the discrete spectrum in the gaps of a perturbed periodic second order operator. Funct. Anal. Appl. 25, No 4, 158-161 (1991)
  • M. Š. Birman and M. Z. Solomjak, Asymptotic properties of the spectrum of differential equations, Mathematical analysis, Vol. 14 (Russian), Akad. Nauk SSSR Vsesojuz. Inst. Naučn. i Tehn. Informacii, Moscow, 1977, pp. 5–58, i. (loose errata) (Russian). MR 0467022
  • M. Š. Birman and M. Z. Solomjak, Spektral′naya teoriya samosopryazhennykh operatorov v gil′bertovom prostranstve, Leningrad. Univ., Leningrad, 1980 (Russian). MR 609148
  • Percy A. Deift and Rainer Hempel, On the existence of eigenvalues of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma (H)$, Comm. Math. Phys. 103 (1986), no. 3, 461–490. MR 832922
  • F. Gesztesy and B. Simon, On a theorem of Deift and Hempel, Comm. Math. Phys. 116 (1988), no. 3, 503–505. MR 937772
  • Rainer Hempel, On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator $H\pm \lambda W$ in a spectral gap of $H$, J. Reine Angew. Math. 399 (1989), 38–59. MR 1004132, DOI https://doi.org/10.1515/crll.1989.399.38
  • Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
  • Victor Ivriĭ, Precise spectral asymptotics for elliptic operators acting in fiberings over manifolds with boundary, Lecture Notes in Mathematics, vol. 1100, Springer-Verlag, Berlin, 1984. MR 771297
  • Khryashchev, S.V.: Asymptotics of the discrete spectrum of the perturbed Hill operator. Zap. LOMI, 147, 188-189 (1985); English transl. in J. Soviet Math. 32 (1986), no. 2.
  • S. V. Khryashchëv, On the discrete spectrum of a perturbed periodic Schrödinger operator, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 190 (1991), no. Issled. po Lineĭn. Oper. i Teor. Funktsiĭ. 19, 157–162, 187–188 (Russian, with English summary); English transl., J. Math. Sci. 71 (1994), no. 1, 2269–2272. MR 1111917, DOI https://doi.org/10.1007/BF02111298
  • S. Z. Levendorskiĭ, The approximate spectral projector method, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 6, 1177–1228, 1342 (Russian). MR 816853
  • S. Z. Levendorskiĭ, Nonclassical spectral asymptotics, Uspekhi Mat. Nauk 43 (1988), no. 1(259), 123–157, 247 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 1, 149–192. MR 937021, DOI https://doi.org/10.1070/RM1988v043n01ABEH001541
  • Serge Levendorskiǐ, Asymptotic distribution of eigenvalues of differential operators, Mathematics and its Applications (Soviet Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1990. Translated from the Russian. MR 1079317
  • G. D. Raĭkov, Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential, Invent. Math. 110 (1992), no. 1, 75–93. MR 1181817, DOI https://doi.org/10.1007/BF01231325
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972. MR 0493419
  • Rozenbljum, G.V., Solomyak, M.Z., Shubin, M.A. Spectral theory of differential operators. Itogi Nauki i Tekniki: Sovremennye Problemy Mat.: Fundamental’nye Napravleniya, vol. 64, VINITI, Moscow, 1989; English transl., Encyclopaedia of Math. Sci., vol 64 (Partial Differential Equatons, VII, Springer-Verlag, 1994.
  • R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR 0237943
  • A. V. Sobolev, Weyl asymptotics for the discrete spectrum of the perturbed Hill operator, Estimates and asymptotics for discrete spectra of integral and differential equations (Leningrad, 1989–90) Adv. Soviet Math., vol. 7, Amer. Math. Soc., Providence, RI, 1991, pp. 159–178. MR 1306512

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35P20

Retrieve articles in all journals with MSC (1991): 35P20


Additional Information

S. Z. Levendorskiĭ
Affiliation: Rostov Institute of National Economy, Engels’a 69, 344798, Rostov-on-Don, Russia
Email: leven@ns.rnd.runnet.ru

Received by editor(s): May 15, 1995
Received by editor(s) in revised form: December 9, 1995
Additional Notes: The author was supported in part by ISF grant RNH 000
Article copyright: © Copyright 1999 American Mathematical Society