Eigenvalue estimate on complete noncompact Riemannian manifolds and applications
HTML articles powered by AMS MathViewer
- by Manfredo P. do Carmo and Detang Zhou
- Trans. Amer. Math. Soc. 351 (1999), 1391-1401
- DOI: https://doi.org/10.1090/S0002-9947-99-02061-9
- PDF | Request permission
Abstract:
We obtain some sharp estimates on the first eigenvalues of complete noncompact Riemannian manifolds under assumptions of volume growth. Using these estimates we study hypersurfaces with constant mean curvature and give some estimates on the mean curvatures.References
- H. Alencar and M. do Carmo, Hypersurfaces of constant mean curvature with finite index and volume of polynomial growth, Arch. Math. (Basel) 60 (1993), no. 5, 489–493. MR 1213521, DOI 10.1007/BF01202317
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Jeff Cheeger and Shing Tung Yau, A lower bound for the heat kernel, Comm. Pure Appl. Math. 34 (1981), no. 4, 465–480. MR 615626, DOI 10.1002/cpa.3160340404
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Eells, J. Jr., Kobayashi, S., Problems in differential geometry, In:, Proc. of US-Japan Seminar on differential geometry. Kyoto 1965, 167–177.
- Fite, W.B., Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 19 (1918), 341–352.
- D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82 (1985), no. 1, 121–132. MR 808112, DOI 10.1007/BF01394782
- Katia Rosenvald Frensel, Stable complete surfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), no. 2, 129–144. MR 1418929, DOI 10.1007/BF01259356
- Michael E. Gage, Upper bounds for the first eigenvalue of the Laplace-Beltrami operator, Indiana Univ. Math. J. 29 (1980), no. 6, 897–912. MR 589652, DOI 10.1512/iumj.1980.29.29061
- Ernst Heintze and Hermann Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 451–470. MR 533065, DOI 10.24033/asens.1354
- Robert Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1, 1–29. MR 519520, DOI 10.2307/2320297
- Mark A. Pinsky, The spectrum of the Laplacian on a manifold of negative curvature. I, J. Differential Geometry 13 (1978), no. 1, 87–91. MR 520603
- Michael E. Taylor, $L^p$-estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), no. 3, 773–793. MR 1016445, DOI 10.1215/S0012-7094-89-05836-5
- James S. W. Wong, Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients, Trans. Amer. Math. Soc. 144 (1969), 197–215. MR 251305, DOI 10.1090/S0002-9947-1969-0251305-6
- Detang Zhou, Laplace inequalities with geometric applications, Arch. Math. (Basel) 67 (1996), no. 1, 50–58. MR 1392052, DOI 10.1007/BF01196166
Bibliographic Information
- Manfredo P. do Carmo
- Affiliation: IMPA, Estrada Dona Castorina, 110-Jardim Botanico 22460-320 Rio de Janeiro, Brazil
- Email: manfredo@ impa.br
- Detang Zhou
- Affiliation: Department of Mathematics, Shandong University, Jinan, Shandong 250100, China
- Received by editor(s): November 15, 1996
- Received by editor(s) in revised form: February 28, 1997
- Additional Notes: Supported partially by NNSFC and TWAS-IMPA membership
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 1391-1401
- MSC (1991): Primary 53C42; Secondary 53A10, 53C20, 35J60
- DOI: https://doi.org/10.1090/S0002-9947-99-02061-9
- MathSciNet review: 1451597