Ultrafilters on $\omega$-their ideals and their cardinal characteristics
HTML articles powered by AMS MathViewer
- by Saharon Shelah, Jörg Brendle and Saharon Shelah
- Trans. Amer. Math. Soc. 351 (1999), 2643-2674
- DOI: https://doi.org/10.1090/S0002-9947-99-02257-6
- Published electronically: March 8, 1999
- PDF | Request permission
Abstract:
For a free ultrafilter $\mathcal {U}$ on $\omega$ we study several cardinal characteristics which describe part of the combinatorial structure of $\mathcal {U}$. We provide various consistency results; e.g. we show how to force simultaneously many characters and many $\pi$–characters. We also investigate two ideals on the Baire space $\omega ^{\omega }$ naturally related to $\mathcal {U}$ and calculate cardinal coefficients of these ideals in terms of cardinal characteristics of the underlying ultrafilter.References
- Bohuslav Balcar and Petr Simon, On minimal $\pi$-character of points in extremally disconnected compact spaces, Topology Appl. 41 (1991), no. 1-2, 133–145. MR 1129703, DOI 10.1016/0166-8641(91)90105-U
- Tomek Bartoszyński, On covering of real line by null sets, Pacific J. Math. 131 (1988), no. 1, 1–12. MR 917862, DOI 10.2140/pjm.1988.131.1
- Tomek Bartoszyński and Haim Judah, Measure and category—filters on $\omega$, Set theory of the continuum (Berkeley, CA, 1989) Math. Sci. Res. Inst. Publ., vol. 26, Springer, New York, 1992, pp. 175–201. MR 1233820, DOI 10.1007/978-1-4613-9754-0_{1}4
- Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR 1350295, DOI 10.1201/9781439863466
- James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775, DOI 10.1017/CBO9780511758867.002
- Murray G. Bell, On the combinatorial principle $P({\mathfrak {c}})$, Fund. Math. 114 (1981), no. 2, 149–157. MR 643555, DOI 10.4064/fm-114-2-149-157
- Murray Bell and Kenneth Kunen, On the PI character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), no. 6, 351–356. MR 642449
- Andreas Blass, Near coherence of filters. I. Cofinal equivalence of models of arithmetic, Notre Dame J. Formal Logic 27 (1986), no. 4, 579–591. MR 867002, DOI 10.1305/ndjfl/1093636772
- Andreas Blass, Selective ultrafilters and homogeneity, Ann. Pure Appl. Logic 38 (1988), no. 3, 215–255. MR 942525, DOI 10.1016/0168-0072(88)90027-9
- Andreas Blass, Simple cardinal characteristics of the continuum, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 63–90. MR 1234278
- A. Blass and H. Mildenberger, On the cofinality of ultraproducts, preprint.
- Andreas Blass and Saharon Shelah, Ultrafilters with small generating sets, Israel J. Math. 65 (1989), no. 3, 259–271. MR 1005010, DOI 10.1007/BF02764864
- Andreas Blass and Saharon Shelah, There may be simple $P_{\aleph _1}$- and $P_{\aleph _2}$-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic 33 (1987), no. 3, 213–243. MR 879489, DOI 10.1016/0168-0072(87)90082-0
- Jörg Brendle, Strolling through paradise, Fund. Math. 148 (1995), no. 1, 1–25. MR 1354935, DOI 10.4064/fm-148-1-1-25
- Michael Canjar, Countable ultraproducts without CH, Ann. Pure Appl. Logic 37 (1988), no. 1, 1–79. MR 924678, DOI 10.1016/0168-0072(88)90048-6
- R. Michael Canjar, Mathias forcing which does not add dominating reals, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1239–1248. MR 969054, DOI 10.1090/S0002-9939-1988-0969054-2
- R. Michael Canjar, On the generic existence of special ultrafilters, Proc. Amer. Math. Soc. 110 (1990), no. 1, 233–241. MR 993747, DOI 10.1090/S0002-9939-1990-0993747-3
- Keith J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984. MR 750828, DOI 10.1007/978-3-662-21723-8
- Peter Lars Dordal, A model in which the base-matrix tree cannot have cofinal branches, J. Symbolic Logic 52 (1987), no. 3, 651–664. MR 902981, DOI 10.2307/2274354
- Peter Lars Dordal, Towers in $[\omega ]^\omega$ and ${}^\omega \omega$, Ann. Pure Appl. Logic 45 (1989), no. 3, 247–276. MR 1032832, DOI 10.1016/0168-0072(89)90038-9
- Erik Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163–165. MR 349393, DOI 10.2307/2272356
- Martin Goldstern, Miroslav Repický, Saharon Shelah, and Otmar Spinas, On tree ideals, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1573–1581. MR 1233972, DOI 10.1090/S0002-9939-1995-1233972-4
- M. Goldstern and S. Shelah, Ramsey ultrafilters and the reaping number—$\textrm {Con}({\mathfrak {r}}<{\mathfrak {u}})$, Ann. Pure Appl. Logic 49 (1990), no. 2, 121–142. MR 1077075, DOI 10.1016/0168-0072(90)90063-8
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- T. Jech, Multiple forcing, Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press, Cambridge, 1986. MR 895139
- Haim Judah and Saharon Shelah, ${\bf \Delta }^1_3$-sets of reals, J. Symbolic Logic 58 (1993), no. 1, 72–80. MR 1217177, DOI 10.2307/2275325
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983. An introduction to independence proofs; Reprint of the 1980 original. MR 756630
- Grzegorz Łabędzki and Miroslav Repický, Hechler reals, J. Symbolic Logic 60 (1995), no. 2, 444–458. MR 1335127, DOI 10.2307/2275841
- Alain Louveau, Une méthode topologique pour l’étude de la propriété de Ramsey, Israel J. Math. 23 (1976), no. 2, 97–116 (French, with English summary). MR 411971, DOI 10.1007/BF02756789
- J. C. Oxtoby and S. M. Ulam, On the existence of a measure invariant under a transformation, Ann. of Math. (2) 40 (1939), 560–566. MR 97, DOI 10.2307/1968940
- A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 491197, DOI 10.1016/0003-4843(77)90006-7
- Arnold W. Miller, A characterization of the least cardinal for which the Baire category theorem fails, Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR 671224, DOI 10.1090/S0002-9939-1982-0671224-2
- Arnold W. Miller, Arnie Miller’s problem list, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 645–654. MR 1234292
- P. Nyikos, Special ultrafilters and cofinal subsets of $\omega ^\omega$, preprint.
- Szymon Plewik, On completely Ramsey sets, Fund. Math. 127 (1987), no. 2, 127–132. MR 882622, DOI 10.4064/fm-127-2-127-132
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955, DOI 10.1007/978-3-662-21543-2
- Saharon Shelah and Juris Steprāns, Erratum: “Maximal chains in ${}^\omega \omega$ and ultrapowers of the integers” [Arch. Math. Logic 32 (1993), no. 5, 305–319; MR1223393 (94g:03094)], Arch. Math. Logic 33 (1994), no. 2, 167–168. MR 1271434, DOI 10.1007/BF01352936
- Juris Steprāns, Combinatorial consequences of adding Cohen reals, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 583–617. MR 1234290
- Eric K. van Douwen, The integers and topology, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR 776622
- Jan van Mill, An introduction to $\beta \omega$, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 503–567. MR 776630
- J. Vaughan, Small uncountable cardinals and topology, in: Open problems in topology (J. van Mill and G. Reed, eds.), North–Holland, 1990, pp. 195-218.
Bibliographic Information
- Jörg Brendle
- Affiliation: Department of Mathematics, Dartmouth College, Bradley Hall, Hanover, New Hampshire 03755
- Address at time of publication: Graduate School of Science and Technology, Kobe University, Rokko–dai, Nada, Kobe 657-8501, Japan
- Email: brendle@pascal.seq.kobe-u.ac.jp
- Saharon Shelah
- Affiliation: Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel; Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
- Received by editor(s): March 10, 1997
- Received by editor(s) in revised form: November 4, 1997
- Published electronically: March 8, 1999
- Additional Notes: The research of the first author was partially supported by DFG–grant Nr. Br 1420/1–1.
The research of the second author was supported by the German–Israeli Foundation for Scientific Research & Development Grant No. G-294.081.06/93. Publication 642 on the second author’s list of publications. - © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2643-2674
- MSC (1991): Primary 03E05, 03E35
- DOI: https://doi.org/10.1090/S0002-9947-99-02257-6
- MathSciNet review: 1686797