Rotation and entropy
HTML articles powered by AMS MathViewer
- by William Geller and Michał Misiurewicz
- Trans. Amer. Math. Soc. 351 (1999), 2927-2948
- DOI: https://doi.org/10.1090/S0002-9947-99-02344-2
- Published electronically: March 29, 1999
- PDF | Request permission
Abstract:
For a given map $f: X \to X$ and an observable $\varphi : X \to \mathbb {R} ^{d},$ rotation vectors are the limits of ergodic averages of $\varphi .$ We study which part of the topological entropy of $f$ is associated to a given rotation vector and which part is associated with many rotation vectors. According to this distinction, we introduce directional and lost entropies. We discuss their properties in the general case and analyze them more closely for subshifts of finite type and circle maps.References
- Lluís Alsedà, Jaume Llibre, and MichałMisiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. MR 1255515, DOI 10.1142/1980
- Alexander Blokh and MichałMisiurewicz, New order for periodic orbits of interval maps, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 565–574. MR 1452180, DOI 10.1017/S0143385797084927
- F. Botelho, Rotational entropy for annulus endomorphisms, Pacific J. Math. 151 (1991), no. 1, 1–19. MR 1127583, DOI 10.2140/pjm.1991.151.1
- Rufus Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125–136. MR 338317, DOI 10.1090/S0002-9947-1973-0338317-X
- Manfred Denker, Christian Grillenberger, and Karl Sigmund, Ergodic theory on compact spaces, Lecture Notes in Mathematics, Vol. 527, Springer-Verlag, Berlin-New York, 1976. MR 0457675, DOI 10.1007/BFb0082364
- J. Kwapisz, Rotation sets and entropy, PhD Thesis, SUNY at Stony Brook, 1995.
- J. Kwapisz and R. Swanson, Asymptotic entropy, periodic orbits, and pseudo-Anosov maps, Ergod. Th. & Dynam. Sys. 18 (1998), 425–439.
- Jaume Llibre and MichałMisiurewicz, Horseshoes, entropy and periods for graph maps, Topology 32 (1993), no. 3, 649–664. MR 1231969, DOI 10.1016/0040-9383(93)90014-M
- Brian Marcus and Selim Tuncel, The weight-per-symbol polytope and scaffolds of invariants associated with Markov chains, Ergodic Theory Dynam. Systems 11 (1991), no. 1, 129–180. MR 1101088, DOI 10.1017/S0143385700006052
- MichałMisiurewicz, Horseshoes for mappings of the interval, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 2, 167–169 (English, with Russian summary). MR 542778
- M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), no. 1, 45–63. MR 579440, DOI 10.4064/sm-67-1-45-63
- Ya. B. Pesin and B. S. Pitskel′, Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50–63, 96 (Russian, with English summary). MR 775933
- Richard Swanson, Periodic orbits and the continuity of rotation numbers, Proc. Amer. Math. Soc. 117 (1993), no. 1, 269–273. MR 1112502, DOI 10.1090/S0002-9939-1993-1112502-X
- Krystyna Ziemian, Rotation sets for subshifts of finite type, Fund. Math. 146 (1995), no. 2, 189–201. MR 1314983, DOI 10.4064/fm-146-2-189-201
Bibliographic Information
- William Geller
- Affiliation: Department of Mathematical Sciences, IUPUI, 402 N. Blackford Street, Indianapolis, Indiana 46202-3216
- Email: wgeller@math.iupui.edu
- Michał Misiurewicz
- Affiliation: Department of Mathematical Sciences, IUPUI, 402 N. Blackford Street, Indianapolis, Indiana 46202-3216
- MR Author ID: 125475
- Email: mmisiure@math.iupui.edu
- Received by editor(s): February 22, 1997
- Published electronically: March 29, 1999
- Additional Notes: The second author was partially supported by NSF grant DMS-9305899.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 351 (1999), 2927-2948
- MSC (1991): Primary 54H20, 58F99, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-99-02344-2
- MathSciNet review: 1615967