Automorphism scheme of a finite field extension
HTML articles powered by AMS MathViewer
- by Pedro J. Sancho de Salas
- Trans. Amer. Math. Soc. 352 (2000), 595-608
- DOI: https://doi.org/10.1090/S0002-9947-99-02361-2
- Published electronically: May 3, 1999
- PDF | Request permission
Abstract:
Let $k\to K$ be a finite field extension and let us consider the automorphism scheme $Aut_kK$. We prove that $Aut_kK$ is a complete $k$-group, i.e., it has trivial centre and any automorphism is inner, except for separable extensions of degree 2 or 6. As a consequence, we obtain for finite field extensions $K_1, K_2$ of $k$, not being separable of degree 2 or 6, the following equivalence: \begin{equation*} K_1\simeq K_2 \Leftrightarrow Aut_kK_1\simeq Aut_kK_2.\end{equation*}References
- Lucile Bégueri, Schéma d’automorphisms. Application à l’étude d’extensions finies radicielles, Bull. Sci. Math. (2) 93 (1969), 89–111 (French). MR 257047
- Stephen U. Chase, On the automorphism scheme of a purely inseparable field extension, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York, 1972, pp. 75–106. MR 0354629
- Stephen U. Chase, Infinitesimal group scheme actions on finite field extensions, Amer. J. Math. 98 (1976), no. 2, 441–480. MR 424773, DOI 10.2307/2373897
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 0302656
- Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
- A. Grothendieck. Fondements de la Géométrie Algébrique (Extraits du Séminaire Bourbaki 1957-1962), Technique de descente et théorèmes d’existence en géométrie algébrique I. Paris (1962).
- Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040
- O. Hölder. Bildung Zusammengesetzter Gruppen. Math. Ann. 46 (1895) pp. 321-422.
- Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149
- Franz Pauer, Spezielle Algebren und transitive Operationen, Math. Z. 160 (1978), no. 2, 103–134 (German). MR 568874, DOI 10.1007/BF01214263
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- Richard Rasala, Inseparable splitting theory, Trans. Amer. Math. Soc. 162 (1971), 411–448. MR 284421, DOI 10.1090/S0002-9947-1971-0284421-2
- Joseph J. Rotman, The theory of groups. An introduction, 2nd ed., Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass., 1973. MR 690593
- P. Sancho. Differentially homogeneous algebras. (preprint).
- Stephen S. Shatz, Galois theory, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 146–158. MR 0249410
Bibliographic Information
- Pedro J. Sancho de Salas
- Affiliation: Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06071, Spain
- Email: sancho@unex.es
- Received by editor(s): October 31, 1997
- Published electronically: May 3, 1999
- Additional Notes: This paper is part of the author’s dissertation at the Universidad de Salamanca under the supervision of J. B. Sancho de Salas.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 595-608
- MSC (1991): Primary 14L27
- DOI: https://doi.org/10.1090/S0002-9947-99-02361-2
- MathSciNet review: 1615958