## A quantum octonion algebra

HTML articles powered by AMS MathViewer

- by Georgia Benkart and José M. Pérez-Izquierdo PDF
- Trans. Amer. Math. Soc.
**352**(2000), 935-968 Request permission

## Abstract:

Using the natural irreducible 8-dimensional representation and the two spin representations of the quantum group $U_{q}$(D$_{4}$) of D$_{4}$, we construct a quantum analogue of the split octonions and study its properties. We prove that the quantum octonion algebra satisfies the q-Principle of Local Triality and has a nondegenerate bilinear form which satisfies a q-version of the composition property. By its construction, the quantum octonion algebra is a nonassociative algebra with a Yang-Baxter operator action coming from the R-matrix of $U_{q}$(D$_{4}$). The product in the quantum octonions is a $U_{q}$(D$_{4}$)-module homomorphism. Using that, we prove identities for the quantum octonions, and as a consequence, obtain at $q = 1$ new “representation theory” proofs for very well-known identities satisfied by the octonions. In the process of constructing the quantum octonions we introduce an algebra which is a q-analogue of the 8-dimensional para-Hurwitz algebra.## References

- John C. Baez,
*$R$-commutative geometry and quantization of Poisson algebras*, Adv. Math.**95**(1992), no. 1, 61–91. MR**1176153**, DOI 10.1016/0001-8708(92)90044-L - M. Bremner,
*Quantum octonions*, preprint (1997). - Vyjayanthi Chari and Andrew Pressley,
*A guide to quantum groups*, Cambridge University Press, Cambridge, 1994. MR**1300632** - Jin Tai Ding and Igor B. Frenkel,
*Spinor and oscillator representations of quantum groups*, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 127–165. MR**1327533**, DOI 10.1007/978-1-4612-0261-5_{5} - V. G. Drinfel′d,
*Almost cocommutative Hopf algebras*, Algebra i Analiz**1**(1989), no. 2, 30–46 (Russian); English transl., Leningrad Math. J.**1**(1990), no. 2, 321–342. MR**1025154** - M. I. Kuznetsov,
*The Melikyan algebras as Lie algebras of the type $G_2$*, Comm. Algebra**19**(1991), no. 4, 1281–1312. MR**1102339**, DOI 10.1080/00927879108824202 - Alberto Elduque and José María Pérez,
*Composition algebras with associative bilinear form*, Comm. Algebra**24**(1996), no. 3, 1091–1116. MR**1374659**, DOI 10.1080/00927879608825625 - Takahiro Hayashi,
*$q$-analogues of Clifford and Weyl algebras—spinor and oscillator representations of quantum enveloping algebras*, Comm. Math. Phys.**127**(1990), no. 1, 129–144. MR**1036118** - N. Jacobson,
*Exceptional Lie algebras*, Lecture Notes in Pure and Applied Mathematics, vol. 1, Marcel Dekker, Inc., New York, 1971. MR**0284482** - Jens Carsten Jantzen,
*Lectures on quantum groups*, Graduate Studies in Mathematics, vol. 6, American Mathematical Society, Providence, RI, 1996. MR**1359532**, DOI 10.1090/gsm/006 - M.-A. Knus, R. Parimala, and R. Sridharan,
*On compositions and triality*, J. Reine Angew. Math.**457**(1994), 45–70. MR**1305278**, DOI 10.1515/crll.1994.457.45 - Yu. I. Manin,
*Quantum groups and noncommutative geometry*, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988. MR**1016381** - Susumu Okubo and J. Marshall Osborn,
*Algebras with nondegenerate associative symmetric bilinear forms permitting composition*, Comm. Algebra**9**(1981), no. 12, 1233–1261. MR**618901**, DOI 10.1080/00927878108822644 - Susumu Okubo and J. Marshall Osborn,
*Algebras with nondegenerate associative symmetric bilinear forms permitting composition. II*, Comm. Algebra**9**(1981), no. 20, 2015–2073. MR**640611**, DOI 10.1080/00927878108822695 - N. Yu. Reshetikhin,
*Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links I,II*, LOMI Preprint E-4-87, E-17-87 (1987-88). - Richard D. Schafer,
*An introduction to nonassociative algebras*, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR**0210757** - K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov, and A. I. Shirshov,
*Rings that are nearly associative*, Pure and Applied Mathematics, vol. 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. Translated from the Russian by Harry F. Smith. MR**668355**

## Additional Information

**Georgia Benkart**- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- MR Author ID: 34650
- Email: benkart@math.wisc.edu
**José M. Pérez-Izquierdo**- Affiliation: Departamento de Matematicas, Universidad de la Rioja, 26004 Logroño, Spain
- Email: jm.perez@dmc.unirioja.es
- Received by editor(s): November 28, 1997
- Published electronically: August 10, 1999
- Additional Notes: The first author gratefully acknowledges support from National Science Foundation Grant #DMS–9622447. The second author is grateful for support from the Programa de Formación del Personal Investigador en el Extranjero and from Pb 94-1311-C03-03, DGICYT. Both authors acknowledge with gratitude the support and hospitality of the Mathematical Sciences Research Institute, Berkeley.
- © Copyright 1999 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**352**(2000), 935-968 - MSC (1991): Primary 17A75, 17B37, 81R50
- DOI: https://doi.org/10.1090/S0002-9947-99-02415-0
- MathSciNet review: 1637137

Dedicated: To the memory of Alberto Izquierdo