On Macaulayfication of Noetherian schemes
HTML articles powered by AMS MathViewer
- by Takesi Kawasaki
- Trans. Amer. Math. Soc. 352 (2000), 2517-2552
- DOI: https://doi.org/10.1090/S0002-9947-00-02603-9
- Published electronically: February 29, 2000
- PDF | Request permission
Abstract:
The Macaulayfication of a Noetherian scheme $X$ is a birational proper morphism from a Cohen-Macaulay scheme to $X$. In 1978 Faltings gave a Macaulayfication of a quasi-projective scheme if its non-Cohen-Macaulay locus is of dimension $0$ or $1$. In the present article, we construct a Macaulayfication of Noetherian schemes without any assumption on the non-Cohen-Macaulay locus. Of course, a desingularization is a Macaulayfication and, in 1964, Hironaka already gave a desingularization of an algebraic variety over a field of characteristic $0$. Our method, however, to construct a Macaulayfication is independent of the characteristic.References
- Y\B{o}ichi Aoyama and Shiro Goto, Some special cases of a conjecture of Sharp, J. Math. Kyoto Univ. 26 (1986), no. 4, 613–634. MR 864465, DOI 10.1215/kjm/1250520830
- Y\B{o}ichi Aoyama and Shiro Goto, A conjecture of Sharp—the case of local rings with $\textrm {dim}\,\textrm {nonCM}\leq 1$ or $\textrm {dim}\leq 5$, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 27–34. MR 977750
- Dave Bayer and Michael Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra, 1982–1994, Source and object code available for Unix and Macintosh computers. Contact the authors, or download from math.harvard.edu via anonymous ftp.
- Markus Brodmann, Kohomologische Eigenschaften on Audblasungen an Lokal Vollständgen Durchschnitten, 1980, Habilitationsschrift.
- Markus Brodmann, Two types of birational models, Comment. Math. Helv. 58 (1983), no. 3, 388–415. MR 727710, DOI 10.1007/BF02564644
- M. Brodmann, A few remarks on blowing-up and connectedness, J. Reine Angew. Math. 370 (1986), 52–60. MR 852509, DOI 10.1515/crll.1986.370.52
- Nguyen Tu Cuong, P-standard systems of parameters and p-standard ideals in local rings, Acta Math. Vietnamica 20 (1995), 145–161.
- Gerd Faltings, Über die Annulatoren lokaler Kohomologiegruppen, Arch. Math. (Basel) 30 (1978), no. 5, 473–476 (German). MR 506246, DOI 10.1007/BF01226087
- Gerd Faltings, Über Macaulayfizierung, Math. Ann. 238 (1978), no. 2, 175–192 (German). MR 512822, DOI 10.1007/BF01424774
- Shiro Goto, On the Cohen-Macaulayfication of certain Buchsbaum rings, Nagoya Math. J. 80 (1980), 107–116. MR 596526
- Shiro Goto, Blowing-up of Buchsbaum rings, Commutative algebra: Durham 1981 (Durham, 1981) London Math. Soc. Lecture Note Ser., vol. 72, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 140–162. MR 693633
- Shiro Goto, On Buchsbaum rings, J. Algebra 67 (1980), no. 2, 272–279. MR 602063, DOI 10.1016/0021-8693(80)90160-X
- Shiro Goto, Naoyoshi Suzuki, and Keiichi Watanabe, On affine semigroup rings, Japan. J. Math. (N.S.) 2 (1976), no. 1, 1–12. MR 450257, DOI 10.4099/math1924.2.1
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- Shiro Goto and Kikumichi Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint.
- Peter Scherk, Bemerkungen zu einer Note von Besicovitch, J. London Math. Soc. 14 (1939), 185–192 (German). MR 29, DOI 10.1112/jlms/s1-14.3.185
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Craig Huneke, The theory of $d$-sequences and powers of ideals, Adv. in Math. 46 (1982), no. 3, 249–279. MR 683201, DOI 10.1016/0001-8708(82)90045-7
- Takesi Kawasaki, On Macaulayfication of certain quasi-projective schemes, J. Math. Soc. Japan 50 (1998), 969-991.
- Hideyuki Matsumura, Commutative ring theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR 1011461
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Tetsushi Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), no. 1, 27–48. MR 737823, DOI 10.1215/kjm/1250521383
- Idun Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420. MR 296067, DOI 10.1090/S0002-9939-1972-0296067-7
- Peter Schenzel, Dualizing complexes and systems of parameters, J. Algebra 58 (1979), no. 2, 495–501. MR 540653, DOI 10.1016/0021-8693(79)90175-3
- Peter Schenzel, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 3, 345–350. MR 654081, DOI 10.1017/S0305004100059417
- Peter Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Mathematics, vol. 907, Springer-Verlag, Berlin-New York, 1982 (German). With an English summary. MR 654151
- Peter Schenzel, Standard systems of parameters and their blowing-up rings, J. Reine Angew. Math. 344 (1983), 201–220. MR 716256, DOI 10.1515/crll.1983.344.201
- Rodney Y. Sharp, Necessary conditions for the existence of dualizing complexes in commutative algebra, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978) Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 213–229. MR 563505
- G. Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra 42 (1976), no. 2, 537–548. MR 422249, DOI 10.1016/0021-8693(76)90112-5
Bibliographic Information
- Takesi Kawasaki
- Affiliation: Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi Minami-Ohsawa 1-1, Tokyo 192-0397, Japan
- Email: kawasaki@comp.metro-u.ac.jp
- Received by editor(s): November 11, 1996
- Published electronically: February 29, 2000
- Additional Notes: The author is supported by Grant-in-Aid for Co-Operative Research.
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 2517-2552
- MSC (1991): Primary 14M05; Secondary 13H10, 14B05, 14E15
- DOI: https://doi.org/10.1090/S0002-9947-00-02603-9
- MathSciNet review: 1707481