Polynomials that are positive on an interval
HTML articles powered by AMS MathViewer
- by Victoria Powers and Bruce Reznick
- Trans. Amer. Math. Soc. 352 (2000), 4677-4692
- DOI: https://doi.org/10.1090/S0002-9947-00-02595-2
- Published electronically: June 14, 2000
- PDF | Request permission
Abstract:
This paper discusses representations of polynomials that are positive on intervals of the real line. An elementary and constructive proof of the following is given: If $h(x), p(x) \in \mathbb {R}[x]$ such that $\{ \alpha \in \mathbb {R} \mid h(\alpha ) \geq 0 \} = [-1,1]$ and $p(x) > 0$ on $[-1,1]$, then there exist sums of squares $s(x), t(x) \in \mathbb {R}[x]$ such that $p(x) = s(x) + t(x) h(x)$. Explicit degree bounds for $s$ and $t$ are given, in terms of the degrees of $p$ and $h$ and the location of the roots of $p$. This is a special case of Schmüdgen’s Theorem, and extends classical results on representations of polynomials positive on a compact interval. Polynomials positive on the non-compact interval $[0,\infty )$ are also considered.References
- S. Bernstein, Sur la représentation des polynômes positifs, Soobshch. Kharkov matem. ob-va, ser. 2, 14 (1915), 227–228.
- Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960, DOI 10.1007/978-1-4612-0793-1
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635, DOI 10.1007/978-3-662-02888-9
- Tamás Erdélyi, Estimates for the Lorentz degree of polynomials, J. Approx. Theory 67 (1991), no. 2, 187–198. MR 1133059, DOI 10.1016/0021-9045(91)90017-5
- T. Erdélyi and J. Szabados, On polynomials with positive coefficients, J. Approx. Theory 54 (1988), no. 1, 107–122. MR 951032, DOI 10.1016/0021-9045(88)90119-0
- J. Franel, solution, Intermèd. des math. 1 (1894), 253–254.
- E. Goursat, solution, Intermèd. des math. 1 (1894), 251.
- David Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific J. Math. 132 (1988), no. 1, 35–62. MR 929582, DOI 10.2140/pjm.1988.132.35
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Zeit. 9 (1921), 74–109.
- C. Hermite, problem, Intermèd. des math. 1 (1894), 65–66.
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
- Jesús A. de Loera and Francisco Santos, An effective version of Pólya’s theorem on positive definite forms, J. Pure Appl. Algebra 108 (1996), no. 3, 231–240. MR 1384003, DOI 10.1016/0022-4049(95)00042-9
- J. A. de Loera and F. Santos, Correction to An effective version of Pòlya theorem on positive definite forms, J. Pure Appl. Alg., to appear.
- Charles A. Micchelli and Allan Pinkus, Some remarks on nonnegative polynomials on polyhedra, Probability, statistics, and mathematics, Academic Press, Boston, MA, 1989, pp. 163–186. MR 1031284
- G. Pólya, Über positive Darstellung von Polynomen Vierteljschr, Naturforsch. Ges. Zürich 73 (1928 141–145, in Collected Papers 2 (1974), MIT Press, 309-313.
- G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer-Verlag, New York, 1976.
- V. Powers and B. Reznick, A new bound for Pólya’s Theorem with applications to polynomials positive on polyhedra, to appear in Proceedings of the MEGA 2000 conference.
- B. Reznick, Some Concrete Aspects of Hilbert’s 17th Problem, to appear in RAGOS Proceedings, Contemp. Math. 253 (2000), 251–272.
- J. Sadier, solution, Intermèd. des math. 1 (1894), 251–253.
- C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, to appear in Trans. Amer. Math. Soc.
- Konrad Schmüdgen, The $K$-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173, DOI 10.1007/BF01446568
- Gilbert Stengle, Complexity estimates for the Schmüdgen Positivstellensatz, J. Complexity 12 (1996), no. 2, 167–174. MR 1398323, DOI 10.1006/jcom.1996.0011
Bibliographic Information
- Victoria Powers
- Affiliation: Department of Mathematics, Emory University, Atlanta, Georgia 30322
- Email: vicki@mathcs.emory.edu
- Bruce Reznick
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- MR Author ID: 147525
- Email: reznick@math.uiuc.edu
- Received by editor(s): January 14, 1999
- Published electronically: June 14, 2000
- Additional Notes: The second author was supported in part by NSF Grant DMS 95-00507
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 352 (2000), 4677-4692
- MSC (1991): Primary 14Q20; Secondary 26C99, 68W30
- DOI: https://doi.org/10.1090/S0002-9947-00-02595-2
- MathSciNet review: 1707203