## Computing the $p$-Selmer group of an elliptic curve

HTML articles powered by AMS MathViewer

- by Z. Djabri, Edward F. Schaefer and N. P. Smart PDF
- Trans. Amer. Math. Soc.
**352**(2000), 5583-5597 Request permission

## Abstract:

In this paper we explain how to bound the $p$-Selmer group of an elliptic curve over a number field $K$. Our method is an algorithm which is relatively simple to implement, although it requires data such as units and class groups from number fields of degree at most $p^2-1$. Our method is practical for $p=3$, but for larger values of $p$ it becomes impractical with current computing power. In the examples we have calculated, our method produces exactly the $p$-Selmer group of the curve, and so one can use the method to find the Mordell-Weil rank of the curve when the usual method of $2$-descent fails.## References

- M. F. Atiyah and C. T. C. Wall,
*Cohomology of groups*, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 94–115. MR**0219512** - C. Batut, K. Belabas, D. Bernardi, H. Cohen, and M. Olivier. GP/PARI version 2.0.6
*Université Bordeaux I*, 1998. - B. J. Birch and H. P. F. Swinnerton-Dyer,
*Notes on elliptic curves. I*, J. Reine Angew. Math.**212**(1963), 7–25. MR**146143**, DOI 10.1515/crll.1963.212.7 - J. W. S. Cassels,
*Lectures on elliptic curves*, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. MR**1144763**, DOI 10.1017/CBO9781139172530 - J. W. S. Cassels,
*Second descents for elliptic curves*, J. Reine Angew. Math.**494**(1998), 101–127. Dedicated to Martin Kneser on the occasion of his 70th birthday. MR**1604468**, DOI 10.1515/crll.1998.001 - H. Cohen. Computation of relative quadratic class groups. In
*ANTS-3 : Algorithmic Number Theory*, J. Buhler, editor. Springer-Verlag, LNCS 1423, pp 433–440, 1998. - J. Cremona.
*mwrank*. Available from**ftp://euclid.ex.ac.uk/pub/cremona/progs/** - Z. Djabri and N.P. Smart. A comparison of direct and indirect methods for computing Selmer groups of an elliptic curve. In
*ANTS-3 : Algorithmic Number Theory*, J. Buhler, editor. Springer-Verlag, LNCS 1423, pp 502–513, 1998. - Alfred Menezes,
*Elliptic curve public key cryptosystems*, The Kluwer International Series in Engineering and Computer Science, vol. 234, Kluwer Academic Publishers, Boston, MA, 1993. With a foreword by Neal Koblitz; Communications and Information Theory. MR**1700718**, DOI 10.1007/978-1-4615-3198-2 - J. R. Merriman, S. Siksek, and N. P. Smart,
*Explicit $4$-descents on an elliptic curve*, Acta Arith.**77**(1996), no. 4, 385–404. MR**1414518**, DOI 10.4064/aa-77-4-385-404 - V. Miller. Short programs for functions on curves. Unpublished Manuscript, 1986.
- M. Pohst,
*A note on index divisors*, Computational number theory (Debrecen, 1989) de Gruyter, Berlin, 1991, pp. 173–182. MR**1151863** - Edward F. Schaefer,
*$2$-descent on the Jacobians of hyperelliptic curves*, J. Number Theory**51**(1995), no. 2, 219–232. MR**1326746**, DOI 10.1006/jnth.1995.1044 - Edward F. Schaefer,
*Class groups and Selmer groups*, J. Number Theory**56**(1996), no. 1, 79–114. MR**1370197**, DOI 10.1006/jnth.1996.0006 - Josef Blass, A. M. W. Glass, David K. Manski, David B. Meronk, and Ray P. Steiner,
*Constants for lower bounds for linear forms in the logarithms of algebraic numbers. I. The general case*, Acta Arith.**55**(1990), no. 1, 1–14. MR**1056110**, DOI 10.4064/aa-55-1-1-14 - Jean-Pierre Serre,
*Propriétés galoisiennes des points d’ordre fini des courbes elliptiques*, Invent. Math.**15**(1972), no. 4, 259–331 (French). MR**387283**, DOI 10.1007/BF01405086 - S. Siksek and N. P. Smart,
*On the complexity of computing the $2$-Selmer group of an elliptic curve*, Glasgow Math. J.**39**(1997), no. 3, 251–257. MR**1484568**, DOI 10.1017/S0017089500032183 - Jaap Top,
*Descent by $3$-isogeny and $3$-rank of quadratic fields*, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 303–317. MR**1368429** - M. Stoll. Implementing 2-descent in genus 2. Preprint.
- Jaap Top,
*Descent by $3$-isogeny and $3$-rank of quadratic fields*, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 303–317. MR**1368429** - Jacques Vélu,
*Isogénies entre courbes elliptiques*, C. R. Acad. Sci. Paris Sér. A-B**273**(1971), A238–A241 (French). MR**294345**

## Additional Information

**Z. Djabri**- Affiliation: Institute of Mathematics and Statistics, University of Kent at Canterbury, Canterbury, Kent, CT2 7NF, United Kingdom
- Address at time of publication: Riskcare, Piercy House, 7 Copthall Avenue, London EC2R 7NJ, United Kingdom
- Email: zmd1@ukc.ac.uk, zdjabri@riskcare.com
**Edward F. Schaefer**- Affiliation: Department of Mathematics, Santa Clara University, Santa Clara, California 95053
- Email: eschaefe@math.scu.edu
**N. P. Smart**- Affiliation: Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS12 6QZ, United Kingdom
- Address at time of publication: Computer Science Department, Woodland Road, University of Bristol, Bristol, BS8 1UB, United Kingdom
- Email: nsma@hplb.hpl.hp.com, nigel@cs.bris.ac.uk
- Received by editor(s): October 28, 1998
- Received by editor(s) in revised form: February 26, 1999, and March 17, 1999
- Published electronically: August 21, 2000
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**352**(2000), 5583-5597 - MSC (2000): Primary 11G05, 11Y99; Secondary 14H52, 14Q05
- DOI: https://doi.org/10.1090/S0002-9947-00-02535-6
- MathSciNet review: 1694286