Weakly o-minimal structures and real closed fields
Authors:
Dugald Macpherson, David Marker and Charles Steinhorn
Journal:
Trans. Amer. Math. Soc. 352 (2000), 5435-5483
MSC (2000):
Primary 03C60, 03C64
DOI:
https://doi.org/10.1090/S0002-9947-00-02633-7
Published electronically:
April 13, 2000
MathSciNet review:
1781273
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
A linearly ordered structure is weakly o-minimal if all of its definable sets in one variable are the union of finitely many convex sets in the structure. Weakly o-minimal structures were introduced by Dickmann, and they arise in several contexts. We here prove several fundamental results about weakly o-minimal structures. Foremost among these, we show that every weakly o-minimal ordered field is real closed. We also develop a substantial theory of definable sets in weakly o-minimal structures, patterned, as much as possible, after that for o-minimal structures.
- 1. T. M. Apostol, Mathematical analysis, a modern approach to advanced calculus, Reading, Massachusetts: Addison-Wesley 1957. MR 19:398c
- 2. R. Arefiev, On monotonicity for weakly o-minimal structures, preprint.
- 3. Y. Baisalov and B. Poizat, Paires de structures o-minimales, J. Symbolic Logic, 63 (1998) 570-578. MR 89m:03063
- 4. Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155–183. MR 891613, https://doi.org/10.1093/qmath/38.2.155
- 5. Gregory Cherlin and Max A. Dickmann, Real closed rings. II. Model theory, Ann. Pure Appl. Logic 25 (1983), no. 3, 213–231. MR 730855, https://doi.org/10.1016/0168-0072(83)90019-2
- 6. M. A. Dickmann, Elimination of quantifiers for ordered valuation rings, J. Symbolic Logic 52 (1987), no. 1, 116–128. MR 877859, https://doi.org/10.2307/2273866
- 7. Lou van den Dries, Remarks on Tarski’s problem concerning (𝑅,+,⋅,𝑒𝑥𝑝), Logic colloquium ’82 (Florence, 1982) Stud. Logic Found. Math., vol. 112, North-Holland, Amsterdam, 1984, pp. 97–121. MR 762106, https://doi.org/10.1016/S0049-237X(08)71811-1
- 8. Lou van den Dries, 𝑇-convexity and tame extensions. II, J. Symbolic Logic 62 (1997), no. 1, 14–34. MR 1450511, https://doi.org/10.2307/2275729
- 9. Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348
- 10. Lou van den Dries and Adam H. Lewenberg, 𝑇-convexity and tame extensions, J. Symbolic Logic 60 (1995), no. 1, 74–102. MR 1324502, https://doi.org/10.2307/2275510
- 11. Angus Macintyre, Kenneth McKenna, and Lou van den Dries, Elimination of quantifiers in algebraic structures, Adv. in Math. 47 (1983), no. 1, 74–87. MR 689765, https://doi.org/10.1016/0001-8708(83)90055-5
- 12. Deirdre Haskell and Dugald Macpherson, Cell decompositions of 𝐶-minimal structures, Ann. Pure Appl. Logic 66 (1994), no. 2, 113–162. MR 1262433, https://doi.org/10.1016/0168-0072(94)90064-7
- 13.
B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, and J. K. Truss, On
-categorical weakly o-minimal theories, preprint.
- 14. Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, https://doi.org/10.1090/S0002-9947-1986-0833697-X
- 15. F-V. Kuhlmann, Abelian groups with contractions I, Contemporary Math. 171 (1994) 217-241. MR 95:03079
- 16. Franz-Viktor Kuhlmann, Abelian groups with contractions. II. Weak 𝑜-minimality, Abelian groups and modules (Padova, 1994) Math. Appl., vol. 343, Kluwer Acad. Publ., Dordrecht, 1995, pp. 323–342. MR 1378210
- 17. Michael C. Laskowski, Vapnik-Chervonenkis classes of definable sets, J. London Math. Soc. (2) 45 (1992), no. 2, 377–384. MR 1171563, https://doi.org/10.1112/jlms/s2-45.2.377
- 18. S. MacLane, The universality of formal power series fields, Bull. Amer. Math. Soc., 45 (1939) 888-890. MR 1:102c
- 19. Dugald Macpherson and Charles Steinhorn, On variants of o-minimality, Ann. Pure Appl. Logic 79 (1996), no. 2, 165–209. MR 1396850, https://doi.org/10.1016/0168-0072(95)00037-2
- 20. L. Mathews, D. Phil dissertation, University of Oxford 1992.
- 21. Anand Pillay, An introduction to stability theory, Oxford Logic Guides, vol. 8, The Clarendon Press, Oxford University Press, New York, 1983. MR 719195
- 22. Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, https://doi.org/10.1090/S0002-9947-1986-0833697-X
- 23. Alexander Prestel, Lectures on formally real fields, Lecture Notes in Mathematics, vol. 1093, Springer-Verlag, Berlin, 1984. MR 769847
- 24. Paulo Ribenboim, Théorie des valuations, Deuxième édition multigraphiée. Séminaire de Mathématiques Supérieures, No. 9 (Été, vol. 1964, Les Presses de l’Université de Montréal, Montreal, Que., 1968 (French). MR 0249425
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 03C60, 03C64
Retrieve articles in all journals with MSC (2000): 03C60, 03C64
Additional Information
Dugald Macpherson
Affiliation:
Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, U.K.
Email:
pmthdm@amsta.leeds.ac.uk
David Marker
Affiliation:
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607
Email:
marker@math.uic.edu
Charles Steinhorn
Affiliation:
Department of Mathematics, Vassar College, Poughkeepsie, New York 12604
Email:
steinhorn@vassar.edu
DOI:
https://doi.org/10.1090/S0002-9947-00-02633-7
Received by editor(s):
April 24, 1998
Published electronically:
April 13, 2000
Additional Notes:
The second author’s research was partially supported by NSF grant DMS-9626856, and the third author’s was partially supported by NSF grants DMS-9401723 and DMS-9704869, and SERC grant GR/H57097
Article copyright:
© Copyright 2000
American Mathematical Society