Induced formal deformations and the Cohen-Macaulay property
HTML articles powered by AMS MathViewer
- by Phillip Griffith
- Trans. Amer. Math. Soc. 353 (2001), 77-93
- DOI: https://doi.org/10.1090/S0002-9947-00-02513-7
- Published electronically: June 13, 2000
- PDF | Request permission
Abstract:
The main result states: if $A/B$ is a module finite extension of excellent local normal domains which is unramified in codimension two and if $S/\varkappa S \simeq \hat B$ represents a deformation of the completion of $B$, then there is a corresponding $S$-algebra deformation $T/\varkappa T \simeq \hat A$ such that the ring homomorphism $S \hookrightarrow T$ represents a deformation of $\hat B \hookrightarrow \hat A$. The main application is to the ascent of the arithmetic Cohen-Macaulay property for an étale map $f : X \to Y$ of smooth projective varieties over an algebraically closed field.${}^*$References
- M. Auslander and D. A. Buchsbaum, On ramification theory in noetherian rings, Amer. J. Math. 81 (1959), 749–765. MR 106929, DOI 10.2307/2372926
- Maurice Auslander, Songqing Ding, and Øyvind Solberg, Liftings and weak liftings of modules, J. Algebra 156 (1993), no. 2, 273–317. MR 1216471, DOI 10.1006/jabr.1993.1076
- Arnaud Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series, vol. 68, Cambridge University Press, Cambridge, 1983. Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid. MR 732439
- Jürgen Bingener and Uwe Storch, Zur Berechnung der Divisorenklassengruppen kompletter lokaler Ringe, Nova Acta Leopoldina (N.F.) 52 (1981), no. 240, 7–63 (German). Leopoldina Symposium: Singularities (Thüringen, 1978). MR 642696
- Adam Borek and Phillip Griffith, Weak purity for Gorenstein rings is determined in codimension four, J. Algebraic Geom. 5 (1996), no. 3, 415–437. MR 1382730
- Wei Liang Chow, On unmixedness theorem, Amer. J. Math. 86 (1964), 799–822. MR 171804, DOI 10.2307/2373158
- Steven Dale Cutkosky, Purity of the branch locus and Lefschetz theorems, Compositio Math. 96 (1995), no. 2, 173–195. MR 1326711
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- Robert Fossum, Hans-Bjørn Foxby, Phillip Griffith, and Idun Reiten, Minimal injective resolutions with applications to dualizing modules and Gorenstein modules, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193–215. MR 396529
- Henri Gillet and Christophe Soulé, $K$-théorie et nullité des multiplicités d’intersection, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 3, 71–74 (French, with English summary). MR 777736
- Phillip Griffith, Normal extensions of regular local rings, J. Algebra 106 (1987), no. 2, 465–475. MR 880969, DOI 10.1016/0021-8693(87)90008-1
- Phillip Griffith, Some results in local rings on ramification in low codimension, J. Algebra 137 (1991), no. 2, 473–490. MR 1094253, DOI 10.1016/0021-8693(91)90102-E
- Phillip Griffith and Dana Weston, Restrictions of torsion divisor classes to hypersurfaces, J. Algebra 167 (1994), no. 2, 473–487. MR 1283298, DOI 10.1006/jabr.1994.1196
- Reinhold Baer, Nets and groups, Trans. Amer. Math. Soc. 46 (1939), 110–141. MR 35, DOI 10.1090/S0002-9947-1939-0000035-5
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Robin Hartshorne and Arthur Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra 1 (1974), 415–437. MR 347821, DOI 10.1080/00927877408548627
- Jürgen Herzog, Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83–105 (German). MR 579384, DOI 10.1515/crll.1980.318.83
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Craig Huneke, A remark concerning multiplicities, Proc. Amer. Math. Soc. 85 (1982), no. 3, 331–332. MR 656095, DOI 10.1090/S0002-9939-1982-0656095-2
- Julian Bonder, Über die Darstellung gewisser, in der Theorie der Flügelschwingungen auftretender Integrale durch Zylinderfunktionen, Z. Angew. Math. Mech. 19 (1939), 251–252 (German). MR 42, DOI 10.1002/zamm.19390190409
- Masayoshi Nagata, On the purity of branch loci in regular local rings, Illinois J. Math. 3 (1959), 328–333. MR 106930
- Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970 (French). MR 0277519
- P. Roberts, Multiplicities and Chern Classes in Local Algebra, in Cambridge Tracts in Mathematics, no. 133, Cambridge Univ. Press, Cambridge (1998).
- D. Smith, Ph.D. Thesis, University of Illinois (1998).
Bibliographic Information
- Phillip Griffith
- Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
- Email: griffith@math.uiuc.edu
- Received by editor(s): August 15, 1998
- Published electronically: June 13, 2000
- Additional Notes: The author would like to thank the referee for several corrections and helpful suggestions.
${}^*$ See Added in Proof for correction - © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 353 (2001), 77-93
- MSC (2000): Primary 13B10, 13B15, 13D10, 13F40; Secondary 13H10, 13N05, 14B07
- DOI: https://doi.org/10.1090/S0002-9947-00-02513-7
- MathSciNet review: 1675194