## Beyond Borcherds Lie algebras and inside

HTML articles powered by AMS MathViewer

- by Stephen Berman, Elizabeth Jurisich and Shaobin Tan PDF
- Trans. Amer. Math. Soc.
**353**(2001), 1183-1219 Request permission

## Abstract:

We give a definition for a new class of Lie algebras by generators and relations which simultaneously generalize the Borcherds Lie algebras and the Slodowy G.I.M. Lie algebras. After proving these algebras are always subalgebras of Borcherds Lie algebras, as well as some other basic properties, we give a vertex operator representation for a factor of them. We need to develop a highly non-trivial generalization of the square length two cut off theorem of Goddard and Olive to do this.## References

- S. Berman,
*On generators and relations for certain involutory subalgebras of Kac-Moody Lie algebras*, Comm. Algebra**17**(1989), no. 12, 3165–3185. MR**1030614**, DOI 10.1080/00927878908823899 - S. Berman and R. V. Moody,
*Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy*, Invent. Math.**108**(1992), no. 2, 323–347. MR**1161095**, DOI 10.1007/BF02100608 - Richard E. Borcherds,
*Vertex algebras, Kac-Moody algebras, and the Monster*, Proc. Nat. Acad. Sci. U.S.A.**83**(1986), no. 10, 3068–3071. MR**843307**, DOI 10.1073/pnas.83.10.3068 - Richard Borcherds,
*Generalized Kac-Moody algebras*, J. Algebra**115**(1988), no. 2, 501–512. MR**943273**, DOI 10.1016/0021-8693(88)90275-X - Richard E. Borcherds,
*Central extensions of generalized Kac-Moody algebras*, J. Algebra**140**(1991), no. 2, 330–335. MR**1120425**, DOI 10.1016/0021-8693(91)90158-5 - Georgia Benkart and Efim Zelmanov,
*Lie algebras graded by finite root systems and intersection matrix algebras*, Invent. Math.**126**(1996), no. 1, 1–45. MR**1408554**, DOI 10.1007/s002220050087 - S. Eswara Rao, R. V. Moody, and T. Yokonuma,
*Lie algebras and Weyl groups arising from vertex operator representations*, Nova J. Algebra Geom.**1**(1992), no. 1, 15–57. MR**1163780** - Igor Frenkel, James Lepowsky, and Arne Meurman,
*Vertex operator algebras and the Monster*, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR**996026** - I. B. Frenkel,
*Representations of Kac-Moody algebras and dual resonance models*, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 325–353. MR**789298** - P. Goddard and D. Olive,
*Algebras, lattices and strings*, Vertex operators in mathematics and physics (Berkeley, Calif., 1983) Math. Sci. Res. Inst. Publ., vol. 3, Springer, New York, 1985, pp. 51–96. MR**781374**, DOI 10.1007/978-1-4613-9550-8_{5} - Elizabeth Jurisich,
*An exposition of generalized Kac-Moody algebras*, Lie algebras and their representations (Seoul, 1995) Contemp. Math., vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 121–159. MR**1395597**, DOI 10.1090/conm/194/02391 - Elizabeth Jurisich,
*Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra*, J. Pure Appl. Algebra**126**(1998), no. 1-3, 233–266. MR**1600542**, DOI 10.1016/S0022-4049(96)00142-9 - E. Jurisich, J. Lepowsky, and R. L. Wilson,
*Realizations of the Monster Lie algebra*, Selecta Math. (N.S.)**1**(1995), no. 1, 129–161. MR**1327230**, DOI 10.1007/BF01614075 - Victor G. Kac,
*Infinite-dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990. MR**1104219**, DOI 10.1017/CBO9780511626234 - Hermann Kober,
*Transformationen von algebraischem Typ*, Ann. of Math. (2)**40**(1939), 549–559 (German). MR**96**, DOI 10.2307/1968939 - P. Slodowy, Beyond Kac-Moody algebras and inside,
*Can. Math. Soc. Conf. Proc.*5(1986), 361-371. - P. Slodowy, Kac-Moody algebras, assoziiert Gruppen und Verallgemeinerugen, Habiliation-sschrift, Universitat Bonn, 1984.

## Additional Information

**Stephen Berman**- Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E6 Canada
- Email: berman@snoopy.usask.ca
**Elizabeth Jurisich**- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- Address at time of publication: Department of Mathematics, College of Charleston, Charleston, South Carolina 29424
- Email: jurisiche@cofc.edu
**Shaobin Tan**- Affiliation: Department of Mathematics, Xiamen University, Xiamen, 361005 Fujian, People’s Republic of China
- Email: tans@jingxian.xmu.edu.cn
- Received by editor(s): March 18, 1998
- Received by editor(s) in revised form: May 7, 1999
- Published electronically: November 8, 2000
- Additional Notes: The first auther gratefully acknowledges the support of the Natural Sciences and Engineering Research Council of Canada
- © Copyright 2000 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**353**(2001), 1183-1219 - MSC (2000): Primary 17B65; Secondary 17B69
- DOI: https://doi.org/10.1090/S0002-9947-00-02582-4
- MathSciNet review: 1707191

Dedicated: This paper is dedicated to Professor Peter Slodowy