Special values of multiple polylogarithms
Authors:
Jonathan M. Borwein, David M. Bradley, David J. Broadhurst and Petr Lisoněk
Journal:
Trans. Amer. Math. Soc. 353 (2001), 907-941
MSC (2000):
Primary 40B05, 33E20; Secondary 11M99, 11Y99
DOI:
https://doi.org/10.1090/S0002-9947-00-02616-7
Published electronically:
October 11, 2000
MathSciNet review:
1709772
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Historically, the polylogarithm has attracted specialists and non-specialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including an intriguing conjecture of Don Zagier.
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- David H. Bailey, Jonathan M. Borwein, and Roland Girgensohn, Experimental evaluation of Euler sums, Experiment. Math. 3 (1994), no. 1, 17–30. MR 1302815
- W. N. Bailey, Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Stechert-Hafner, Inc., New York, 1964. MR 0185155
- A. A. Beĭlinson, A. B. Goncharov, V. V. Schechtman, and A. N. Varchenko, Aomoto dilogarithms, mixed Hodge structures and motivic cohomology of pairs of triangles on the plane, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 135–172. MR 1086885, DOI https://doi.org/10.1007/s101070050083
- Bruce C. Berndt, Ramanujan’s notebooks. Part I, Springer-Verlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125
- David Borwein, Jonathan M. Borwein, and Roland Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277–294. MR 1335874, DOI https://doi.org/10.1017/S0013091500019088
- J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluations of $k$-fold Euler/Zagier sums: a compendium of results for arbitrary $k$, Electron. J. Combin. 4 (1997), no. 2, Research Paper 5, approx. 21. The Wilf Festschrift (Philadelphia, PA, 1996). MR 1444152
- Jonathan M. Borwein, David M. Bradley, David J. Broadhurst and Petr Lisoněk, Combinatorial Aspects of Multiple Zeta Values, Elec. J. Combin., 5 (1998), no. 1, #R38. MR 99g:11100.
- Jonathan M. Borwein and Roland Girgensohn, Evaluation of triple Euler sums, Electron. J. Combin. 3 (1996), no. 1, Research Paper 23, approx. 27. MR 1401442
- Jonathan M. Borwein and Petr Lisoněk, Applications of Integer Relation Algorithms, Discrete Math., Proc. FPSAC’97, special issue, to appear.
- Douglas Bowman and David M. Bradley, Resolution of Some Open Problems Concerning Multiple Zeta Evaluations of Arbitrary Depth, submitted.
- David J. Broadhurst, Massive 3-loop Feynman Diagrams Reducible to SC$^*$ Primitives of Algebras of the Sixth Root of Unity, Eur. Phys. J. C 8 (1999), 311–333.
- ---, On the Enumeration of Irreducible $k$-fold Euler Sums and Their Roles in Knot Theory and Field Theory, to appear in J. Math. Phys.
- D. J. Broadhurst, J. A. Gracey, and D. Kreimer, Beyond the triangle and uniqueness relations: non-zeta counterterms at large $N$ from positive knots, Z. Phys. C 75 (1997), no. 3, 559–574. MR 1461268, DOI https://doi.org/10.1007/s002880050500
- D. J. Broadhurst and D. Kreimer, Knots and numbers in $\phi ^4$ theory to $7$ loops and beyond, Internat. J. Modern Phys. C 6 (1995), no. 4, 519–524. MR 1352337, DOI https://doi.org/10.1142/S012918319500037X
- D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to $9$ loops, Phys. Lett. B 393 (1997), no. 3-4, 403–412. MR 1435933, DOI https://doi.org/10.1016/S0370-2693%2896%2901623-1
- Jerzy Browkin, Conjectures on the dilogarithm, $K$-Theory 3 (1989), no. 1, 29–56. MR 1014823, DOI https://doi.org/10.1007/BF00534144
- ---, $K$-Theory, Cyclotomic Equations, and Clausen’s Function, in Structural Properties of Polylogarithms, edited by Leonard Lewin, Amer. Math. Soc. Mathematical Surveys and Monographs 37, Providence, RI, 1991, 233–273.
- Wenchang Chu, Hypergeometric series and the Riemann zeta function, Acta Arith. 82 (1997), no. 2, 103–118. MR 1477505, DOI https://doi.org/10.4064/aa-82-2-103-118
- Richard E. Crandall, Topics in advanced scientific computation, Springer-Verlag, New York; TELOS. The Electronic Library of Science, Santa Clara, CA, 1996. MR 1392472
- Richard E. Crandall, Fast evaluation of multiple zeta sums, Math. Comp. 67 (1998), no. 223, 1163–1172. MR 1459385, DOI https://doi.org/10.1090/S0025-5718-98-00950-8
- Richard E. Crandall and Joe P. Buhler, On the evaluation of Euler sums, Experiment. Math. 3 (1994), no. 4, 275–285. MR 1341720
- Hervé Daudé, Philippe Flajolet, and Brigitte Vallée, An average-case analysis of the Gaussian algorithm for lattice reduction, Combin. Probab. Comput. 6 (1997), no. 4, 397–433. MR 1483426, DOI https://doi.org/10.1017/S0963548397003258
- Karl Dilcher, On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function, Aequationes Math. 48 (1994), no. 1, 55–85. MR 1277891, DOI https://doi.org/10.1007/BF01837979
- V. G. Drinfel′d, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with ${\rm Gal}(\overline {\bf Q}/{\bf Q})$, Algebra i Analiz 2 (1990), no. 4, 149–181 (Russian); English transl., Leningrad Math. J. 2 (1991), no. 4, 829–860. MR 1080203
- H. M. Edwards, Riemann’s zeta function, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Pure and Applied Mathematics, Vol. 58. MR 0466039
- Leonhard Euler, Meditationes Circa Singulare Serierum Genus, Novi Comm. Acad. Sci. Petropol., 20 (1775), 140–186, Reprinted in “Opera Omnia”, ser. I, 15, B. G. Teubner, Berlin, 1927, pp. 217–267.
- Nicholas R. Farnum, Problem 10635, Amer. Math. Monthly, 105 (January 1998), p. 68.
- Helaman R. P. Ferguson, David H. Bailey, and Steve Arno, Analysis of PSLQ, an integer relation finding algorithm, Math. Comp. 68 (1999), no. 225, 351–369. MR 1489971, DOI https://doi.org/10.1090/S0025-5718-99-00995-3
- Philippe Flajolet, Gilbert Labelle, Louise Laforest, and Bruno Salvy, Hypergeometrics and the cost structure of quadtrees, Random Structures Algorithms 7 (1995), no. 2, 117–144. MR 1369059, DOI https://doi.org/10.1002/rsa.3240070203
- Philippe Flajolet and Bruno Salvy, Euler sums and contour integral representations, Experiment. Math. 7 (1998), no. 1, 15–35. MR 1618286
- George Gasper and Mizan Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey. MR 1052153
- Alexander B. Goncharov, Polylogarithms in arithmetic and geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 374–387. MR 1403938
- A. B. Goncharov, The double logarithm and Manin’s complex for modular curves, Math. Res. Lett. 4 (1997), no. 5, 617–636. MR 1484694, DOI https://doi.org/10.4310/MRL.1997.v4.n5.a1
- A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998), no. 4, 497–516. MR 1653320, DOI https://doi.org/10.4310/MRL.1998.v5.n4.a7
- I. P. Goulden and D. M. Jackson, Combinatorial enumeration, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota; Wiley-Interscience Series in Discrete Mathematics. MR 702512
- Andrew Granville, A decomposition of Riemann’s zeta-function, Analytic number theory (Kyoto, 1996) London Math. Soc. Lecture Note Ser., vol. 247, Cambridge Univ. Press, Cambridge, 1997, pp. 95–101. MR 1694987, DOI https://doi.org/10.1017/CBO9780511666179.009
- Michael E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), no. 2, 275–290. MR 1141796
- Michael E. Hoffman, The algebra of multiple harmonic series, J. Algebra 194 (1997), no. 2, 477–495. MR 1467164, DOI https://doi.org/10.1006/jabr.1997.7127
- ---, Quasi-Shuffle Products, J. Alg. Comb., (to appear).
- ---, Algebraic Structures on the Set of Multiple Zeta Values, preprint.
- J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluations of $k$-fold Euler/Zagier sums: a compendium of results for arbitrary $k$, Electron. J. Combin. 4 (1997), no. 2, Research Paper 5, approx. 21. The Wilf Festschrift (Philadelphia, PA, 1996). MR 1444152
- Aleksandar Ivić, The Riemann zeta-function, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. The theory of the Riemann zeta-function with applications. MR 792089
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
- Joseph D. E. Konhauser, Dan Velleman and Stan Wagon, Which Way Did The Bicycle Go?, Mathematical Association of America, 1996, p. 174.
- Gilbert Labelle and Louise Laforest, Combinatorial variations on multidimensional quadtrees, J. Combin. Theory Ser. A 69 (1995), no. 1, 1–16. MR 1309148, DOI https://doi.org/10.1016/0097-3165%2895%2990103-5
- Tu Quoc Thang Le and Jun Murakami, Kontsevich’s integral for the Homfly polynomial and relations between values of multiple zeta functions, Topology Appl. 62 (1995), no. 2, 193–206. MR 1320252, DOI https://doi.org/10.1016/0166-8641%2894%2900054-7
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI https://doi.org/10.1007/BF01457454
- Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR 618278
- Leonard Lewin (ed.), Structural properties of polylogarithms, Mathematical Surveys and Monographs, vol. 37, American Mathematical Society, Providence, RI, 1991. MR 1148371
- C. Markett, Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), no. 2, 113–132. MR 1285535, DOI https://doi.org/10.1006/jnth.1994.1058
- Hoang Ngoc Minh, Summations of Polylogarithms via Evaluation Transform, Mathematics and Computers in Simulation, 42 (1996), 707–728.
- ---, Fonctions de Dirichlet d’ordre $n$ et de Paramètre $t$, Discrete Math., 180 (1998), 221–241.
- Hoang Ngoc Minh and Michel Petitot, Mots de Lyndon: Générateurs de Relations entre les Polylogarithmes de Nielsen, presented at FPSAC (Formal Power Series and Algebraic Combinatorics), Vienna, July 1997.
- ---, Lyndon words, Polylogarithms and the Riemann $\zeta$ Function, Discrete Math. (to appear).
- Hoang Ngoc Minh, Michel Petitot and Joris van der Hoeven, Shuffle Algebra and Polylogarithms, in Proc. FPSAC’98, the 10th International Conference on Formal Power Series and Algebraic Combinatorics, Toronto, June 1998.
- ---, L’algèbre des Polylogarithmes par les Séries Génératrices, presented at FPSAC (Formal Power Series and Algebraic Combinatorics), Barcellona, June 1999.
- ---, Computation of the Monodromy of Generalized Polylogarithms, preprint.
- Niels Nielsen, Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten, Chelsea Publishing Co., New York, 1965 (German). MR 0185152
- Yasuo Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39–43. MR 1670544, DOI https://doi.org/10.1006/jnth.1998.2314
- Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
- Neil J. A. Sloane, Online Encyclopedia of Integer Sequences, http://www.research.att.com/$\sim$njas/sequences/.
- Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR 847717
- E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- Zdzislaw Wojtkowiak, The Basic Structure of Polylogarithmic Functional Equations, in Structural Properties of Polylogarithms, edited by Leonard Lewin, Amer. Math. Soc. Mathematical Surveys and Monographs 37, Providence, RI, 1991, 205–231.
- Zdzisław Wojtkowiak, Functional equations of iterated integrals with regular singularities, Nagoya Math. J. 142 (1996), 145–159. MR 1399471, DOI https://doi.org/10.1017/S0027763000005675
- ---, Mixed Hodge Structures and Iterated Integrals I, June, 1999. [$K$-theory preprint #351, http://www.math.uiuc.edu/K-theory]
- Don Zagier, Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 497–512. MR 1341859
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 40B05, 33E20, 11M99, 11Y99
Retrieve articles in all journals with MSC (2000): 40B05, 33E20, 11M99, 11Y99
Additional Information
Jonathan M. Borwein
Affiliation:
Centre for Experimental and Constructive Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Email:
jborwein@cecm.sfu.ca
David M. Bradley
Affiliation:
Department of Mathematics and Statistics, University of Maine, 5752 Neville Hall, Orono, Maine 04469–5752
MR Author ID:
329306
ORCID:
0000-0003-2952-2366
Email:
bradley@gauss.umemat.maine.edu, dbradley@member.ams.org
David J. Broadhurst
Affiliation:
Physics Department, Open University, Milton Keynes, MK7 6AA, United Kingdom
Email:
D.Broadhurst@open.ac.uk
Petr Lisoněk
Affiliation:
Centre for Experimental and Constructive Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
Email:
lisonek@cecm.sfu.ca
Keywords:
Euler sums,
Zagier sums,
multiple zeta values,
polylogarithms,
multiple harmonic series,
quantum field theory,
knot theory,
Riemann zeta function.
Received by editor(s):
July 29, 1998
Received by editor(s) in revised form:
August 14, 1999
Published electronically:
October 11, 2000
Additional Notes:
The research of the first author was supported by NSERC and the Shrum Endowment of Simon Fraser University.
Article copyright:
© Copyright 2000
American Mathematical Society